Extruded Resin FDM Printing (With Lasers!)

At this point, 3D printers are nearly everywhere. Schools, hackerspaces, home workshops, you name it. Most of these machines are of the extruded-filament variety, better known as FDM or Fused Deposition Modelling. Over the last few years, cheap LCD printers have brought resin printing to many shops as well. LCD printers, like their DLP and SLA counterparts, use ultraviolet light to cure liquid resin. These machines are often praised for the super-high detail they can achieve, but are realllly slow. And messy —  liquid resin gets everywhere and sticks to everything.

We’re not exactly sure what [Jón Schone] of Proper Printing was thinking when he set out to convert a classic printer to use resin instead of filament, but it had to be something along the lines of “Can you make FDM printing just as messy as LCD printing?”

It turns out you can. His extremely well-documented research is shown in the video below, and logs his design process, from initial idea to almost-kinda-working prototype. As you may expect, extruding a high-viscosity liquid at a controlled rate and laser-curing it is not an easy task, but [Jón] made a fantastic attempt. From designing and building his own peristaltic pump, to sending a UV laser through fiber-optic cables, he explored a ton of different approaches to making the printer work. While he may not have been 100% successful, the video is a great reminder that not all projects have to go the way we hope they will.

Even so, he’s optimistic, and said that he has a few ideas to refine the design, and welcomes any input from the community. This isn’t even the only new and interesting approach to resin printing we’ve seen in the last few weeks, so we share [Jón]’s optimism that the FDM Resin Printer will work (someday, at least).

Continue reading “Extruded Resin FDM Printing (With Lasers!)”

The Sub-$100 Easythreed X1 3D Printer, Is It More Than A Novelty?

There was a time when a cheap 3D printer meant an extremely dubious “Prusa i3” clone as a kit of parts, with the cheapest possible components which, when assembled, would deliver a distinctly underwhelming experience. Most hackerspaces have one of these cheap printers gathering dust somewhere, usually with a rats-nest of wires hanging out of one side of it. But those awful kits have been displaced by sub-$200 printers that are now rather good, so what’s the current lowest end of the market? The answer lies in printers such as the sub-$100 Easythreed X1, which All3DP have given a review. We’ve been curious about this printer for a while, but $100 is a bit much to spend on a toy, so it’s interesting to see their take on it.

It’s a tiny printer marketed as a kid’s toy with an unheated bed and a miniature 100 mm cubic print volume, so we don’t blame them for pitching their expectations low. They found the supplied slicer to be buggy, but the printer itself to be surprisingly better than they expected. It seems that the Easythreed can deliver reasonable but not superlative small prints amid the occasional disaster, but for under $100, we’d guess that any print is a result. Still, we’ll join them in their assessment that it’s worth spending a bit more on a better printer.

We’ve seen another tiny Easythreed model before, when someone made a novelty wrist-mounted wearable version.

Inside 3D Printing Shoes

If you’ve ever thought about 3D printing shoes, you’ll enjoy watching the video below about a Portland-based company that creates shoes on demand using an HP MJF 5200 3D printer. Granted, this isn’t a printer you likely have in your basement. The one-ton printer costs up to a half-million dollars but watching it do its thing is pretty interesting.

The printer doesn’t create the entire shoe, but just a spongy foam-like TPU footbed and heel. They run the printer overnight and get about a dozen pairs out at once. There’s quite a bit of clean-up to get the piece ready. Of course, there’s also the assembly of the rest of the shoe to take into account.

Continue reading “Inside 3D Printing Shoes”

Wonderful Foldable Printable Dodecahedron

Debra Ansell of [GeekMomProjects] fame came up with a neat, 3D design that prints flat and then folds up into everyone’s favorite Platonic solid: a D12.

Why would you want to do this? Well, folding up your 3D prints gives you a third dimension “for free” without using all that support material. Here, all of the outside faces of the dodecahedron are printed flat against the build plate, which is probably the nicest side of your prints. And embedding LEDs in the resulting shape would probably be easy because they’re all in plane. And speaking of LEDs, we kinda expected to see them here, given Debra’s motto: “LEDs improve everything” — that part is up to you.

Debra notes that she likes PETG instead of PLA for the extra strength in the thin-printed hinges, and we’d bet that your printer’s tolerances will need to be spot on for the clips that hold the whole thing together. (We’d be tempted to apply a little super-duper glue.)

As always with Debra’s projects, there’s some creative solutions on display here that’ll help you out whether you need a D12 or a D20, so give it a look!

Thanks [Peter] for the tip.

Continue reading “Wonderful Foldable Printable Dodecahedron”

3D Printed Concrete Beam Improves Sustainability

Many of the 3D printed houses and structures we’ve seen use concrete and are — frankly — a little underwhelming. Making big squares out of concrete isn’t that hard and while we are sure there is some benefit, it isn’t overwhelming. [Andy Coward] apparently felt the same way and set out to find ways that 3D printing could offer unique benefits in building structures. The result: a beam that would be difficult to create with conventional techniques but is easy to make with a printer. The advantage is that it uses 78% less concrete than a conventional beam with the same properties.

The key is that in a normal beam, not much of the concrete is bearing a significant load. It is simply there because you need some concrete on one side of the beam and then some more on the other side. In the center, surprisingly little of the concrete actually supports anything. The new beam takes advantage of this along with a steel reinforcement at a strategic point. Still, it uses 70% less steel than a typical reinforced beam.

Continue reading “3D Printed Concrete Beam Improves Sustainability”

3D Printer Helps Make A Neat Lyric Video

These days, it’s a lot easier to get attention online if your lovely music comes with some kind of visual accompaniment. Of course, shooting a full-scale music video can be expensive, so lyric videos have become a more affordable, approachable avenue that are growing in popularity. [prash] whipped one up recently with the help of a 3D printer.

The video is a timelapse of a 3D print, something we’re very familiar with around these parts. [prash] embedded words in the various layers of the objects to be printed. Thus, as the prints are laid down on the build plate, the words are revealed to the camera shooting the time lapse. The scene is further improved by shaping the prints to reference the lyrics of the song, and using attractive infill designs like spirals and stripes. There are even some strategically placed clouds and pretty lighting to improve the effect.

It’s a neat use of 3D printing, and an artful one at that. We’re pretty confident that [prash] has put together a highly unique lyric video, and it’s much more impressive than the dodgy 3D printing [Will.i.am] featured in his not-quite-a-Britney song a decade ago. Video after the break.

Continue reading “3D Printer Helps Make A Neat Lyric Video”

3D-Printed Gear Press Can Squash Stuff, Kinda

A press is a useful thing to have, whether you like destroying stuff or you simply want to properly install some bearings. [Retsetman] decided to build one from scratch, eschewing the typical hydraulic method for a geared design instead.

The benefit of going with a gear press design is that [Retsetman] was able to 3D print the required gears himself. The design uses a series of herringbone gears to step down the output of two brushed DC motors. This is then turned into linear motion via a rack and pinion setup. Naturally, the strength of the gears and rack is key to the performance of the press. As you might expect, a fair few of the printed gears suffered failures during the development process.

The final press is demonstrated by smooshing various objects, in true YouTube style. It’s not really able to destroy stuff like a proper hydraulic press, but it can kind of crush a can and amusingly squash a teddy bear. If you’re really keen on making a gear press, though, you’re probably best served by going with a metal geartrain. Video after the break.

Continue reading “3D-Printed Gear Press Can Squash Stuff, Kinda”