Ringing In The New Year With An Arduino And Calcium Carbide

carbide

It’s the first we’ve heard of it, but a New Year’s Eve tradition in The Netherlands called Carbidschieten sounds like it’s just up our alley. Basically, a small chunk of calcium carbide and a little bit of water is placed in a metal milk churn. The carbide decomposes into acetylene and a flame is held up to a small hole in the milk churn. The resulting explosion sends the lid of the milk churn across a field and much fun is had by all.

[Edwin Eefting],  [Johan Postema], [Elger Postema] are exploding 1000 liters of acetylene this New Years and needed a safe way to detonate their celebration. They came up with an electronic ignition system based on an Arduino that probably makes just as much noise as the explosion itself.

The build is basically an Arduino with a few relays. When a pair of buttons are pressed for longer than a second, the Arduino goes into countdown mode with the requisite alarms and ringing bells. When it’s time to fire the carbide cannon, a power supply is turned on that heats up a glow plug, igniting the acetylene. It’s a great build, and adds an adequate amount of safety for an event involving exploding 1000 liters of acetylene.

You can check out the videos of the countdown timer after the break, or check out the Facebook group here.

Continue reading “Ringing In The New Year With An Arduino And Calcium Carbide”

nerf-sentry

Nerf Sentry Gun For The Apocalypse

nerf-sentry

If you’ve ever wanted to shoot someone with a Nerf gun, but just didn’t have the energy to get off the couch, this hack may be for you. It’s also a good way to ward off zombies if another apocalypse, Mayan or otherwise, is on the horizon.

Although the effects are very cool, as seen in the video after the break, the method for making this setup was quite simple. The requirements for this project were that the gun could not be permanently modified, and everything had to fire automatically. These restrictions may have contributed to the simplicity of the design as many of us would start breaking things before we had to.

Instead of some elaborate hack, the trigger was tied back in the firing position at all times. A relay was then used to interrupt the power supply to the mechanism allowing an Arduino equipped with an infrared sensor to automatically control the firing. The setup is explained after the break, but skip to around 1:55 if you’d rather just see the guns in action. Continue reading “Nerf Sentry Gun For The Apocalypse”

Buzzed Buzzer Gives You A Breathalyzer Test While Ringing In The New Year

We’re not sure if there’s enough time to get a parts order delivered, but no geeky New Year’s party will be complete without a party buzzer that doubles as a Breathalyzer. The Buzzed Buzzer hides all of the necessary bits inside of a paper and plastic party favor. We guess it only buzzes if you’re over the limit? Actually that’s not the case at all. The accuracy of the sensor used in the project really just measures the presence of alcohol and can’t quantify BAC.

A Teensy 2.0 microcontroller board drives the project. Powered by a Lithium cell, it monitors an MQ-3 Alcohol gas sensor and drives a buzzer. The components are just small enough to be hidden by the cone of the party buzzer. You can see a demonstration of this in the short clip after the jump.

This is a fun project, but we’re still big fans of getting the crowd involved with this large LED meter which is hooked up to the same style of alcohol sensor.

Continue reading “Buzzed Buzzer Gives You A Breathalyzer Test While Ringing In The New Year”

Train Set Built In A Suitcase Does More Than You’d Think

automated-suitcase-train-set

[Mario] can take his train set on the road with him because he build the thing inside of a suitcase. That in itself is pretty neat, but he pulled off more than just laying down a ring of track and surrounding it with realistic scenery. This train set is automated.

The suitcase itself looks a bit funny and that’s because it started as a portable phonograph. Removing the turntable and it’s requisite parts made plenty of room for the N-scale railroad (that’s really small stuff!). An Arduino with a motor shield drives the train around the loop. A reed sensor below a section of track provides feedback on where the locomotive is in the circuit. When it reaches that point the train stops and a bridge is lowered over the track for some invisible traffic to cross. There is even some audio flair which can be heard in the video after the break. It includes the whistle of the train and the ding of that bell mounted on the top half of the case.

Continue reading “Train Set Built In A Suitcase Does More Than You’d Think”

Wooden Box Repeats Rhythm Used When Knocking On The Lid

knock-box-build

[Paul Mandel] just finished building this knock box project. It’s a familiar concept that uses a solenoid to tap on the side of the box. The Arduino driven setup monitors vibrations on the lid. When you knock on the box, it records the pattern and plays it back using the solenoid.

He was inspired by a knock-detecting door lock. Using that code as the starting point he implemented a system that takes input from a simple push button and echos back the rhythm using the Pin 13 LED on the Arduino board. This is a great way to start as it removes the complexity of driving a solenoid and monitoring a piezo element. After a bit of success he implemented each of those hardware modules one at a time. You can get a look at the final product in the clip after the break.

One of our favorite version of this project is still the knock block from several years back.

Continue reading “Wooden Box Repeats Rhythm Used When Knocking On The Lid”

Solving A Rubick’s Cube With LEGO And Popsicle Sticks

solver

We’ve seen automated Rubick’s Cube solvers before, but never one that has garnered as many awards as [James]’ popsicle stick and LEGO Rubick’s Cube solver.\

To keep the project complexity down, [James] opted not to use a webcam to detect the color pattern on each face of the cube. Instead, he wrote a little Python app to manually enter the pattern on each face before letting his algorithm loose on the cube and calculating how to solve it.

So far, [James] has seen a huge amount of success from his project. He entered it in the New Zealand Brightsparks competition netting him $1000. This competition led to a win in the Realize the Dream science competition where he won a major prize and an entry into the International Taiwan Science Fair held early next year. An awesome accomplishment from a budding hacker, and we can’t wait to see what he comes up with next.

You can check out a video of [James]’ cube solver after the break.

Continue reading “Solving A Rubick’s Cube With LEGO And Popsicle Sticks”

Twitter Radio

twitter-radio

This anthropomorphized wood bowl will read Tweets out loud. It was built by [William Lindmeier] as part of his graduate work in the Interactive Telecommunications Program (ITP) at New York University. View the clip after the break to see and hear a list from his Twitter feed read in rather pleasant text-to-speech voices.

The electronics involved are rather convoluted. Inside the upturned bowl you’ll find both an Arduino and a Raspberry Pi. But that’s not the only thing that goes into this. The best sounding text-to-speech program [William] could find was for OSX, so there is a remote computer involved as well. But we think what makes this special is the concept and execution, not the level of hardware inefficiency.

The knob to the left sets the volume and is also responsible for powering down the device. The knob of the right lets you select from various Twitter lists. Each turn of the knob is responded to with a different LED color in the nose and a spoken menu label. You can get a quick overview of the project from this summary post.

Continue reading “Twitter Radio”