A Simple Touch Interface For Music Player Daemon And More

mpd-controller

[Andrew] recently got the authorization to install Linux on his work PC, and he was looking for a way to control his music without relying on keyboard shortcuts to do so. Additionally, he wanted an unmistakable visual cue when he received messages in Pidgin, so he decided to build an external input/notification box.

The control box, quite literally, is a cardboard box in which [Andrew] crammed some components he got way back when from the crew at Seeed Studio. A Seeeduino serves as the brains of his control panel, interfacing with his PC over USB. He uses a set of 4 touch sensors and a potentiometer to control the MPD, allowing him to easily switch tracks, pause his music, control the volume, and lock his computer with a simple touch. A side-mounted RGB LED lights green to show that the system has received his commands successfully, pulsing a bright blue whenever a message arrives via Pidgin.

While the case isn’t exactly pretty, it is small, recycled, and takes up very little desk space. [Andrew] says that it works great, and he has made his code available on github if anyone is interested in using it.

8-bit Computer Project Lands In A Philco Radio Case

We’ve enjoyed seeing the development progress of Veronica, [Quinn Dunki’s] 8-bit computer project. It started out on a breadboard, then moved to edge-connected PCBs, and now [Quinn] has given Veronica a body of her own.

The donor is a Philco Model 42-327T and was produced in 1942. It was chosen because it is non-functional and missing several pieces. We wonder about the collector’s value of the piece but since [Quinn] snagged it from eBay there can’t be in huge demand right now. The teardown images are priceless. There seems to be no reasoning behind component placement for the beast. It looks more like a junk drawer packed full of relic components than something that actually worked once upon a time.

But we digress. After gutting the retro wooden case [Quinn] set out to fabricate her own face plate. Since she’s comfortable working with copper clad, she whipped up a negative design and etched the dashboard seen above. It mounts in the original dial opening, and hosts all of the controls she needs to work with the 8-bit computer. Just below is where the present buttons used to be located. You can just see the hexout display for reading data from the registers mounted in that void.

Minestation – An External Weather Display For Your Minecraft World

minestation

If you’re a big Minecraft fan, the folks at [radikaldesign] have something that might be of interest to you. (Translation) Inspired by some of their Minecraft-loving friends, they have developed Minestation – a weather station for your Minecraft game.

The concept is simple. Here in the real world we have the ability to look out the window and see what it is like outside, but many of us turn to digital weather stations, the Weather Channel, or the local news to get the real scoop. They decided that the world of Minecraft should be no different, so they constructed an Arduino shield that allows players to see weather conditions as they play.

The shield contains a Nokia 6100 LCD screen which displays all sorts of useful information. It features a clock and calendar that reflect in-game time, making it easy to know when night is going to fall. It also continually displays the player’s coordinates as well as what the weather looks like in that region. Having this information at hand when you’ve been slogging away in the mines (losing track of time and weather) seems like it could be pretty useful at times.

You can buy one of the devices at Minestation.me, but the design is completely open, so you can easily construct one of your own without too much hassle.

Continue reading to see a video of the Minestation in action.

[Via HackedGadgets]

Continue reading “Minestation – An External Weather Display For Your Minecraft World”

Reprogramming Promotional USB Dongles To Launch Custom URLs

webkey-hacking

The teachers at [Jjshortcut’s] school were each given a Webkey by the administration as a promotional item of sorts, but most of the staff saw them as useless, so they pitched them. [Jjshortcut] got his hands on a few of them and decided to take one apart to see what made them tick.

He found that the device was pretty simple, consisting of a push button that triggers the device to open the Windows run prompt, enter a URL, and launch Internet Explorer. Since the microcontroller was locked away under a blob of epoxy, he started poking around the onboard EEPROM with his Bus Pirate to see if he could find anything interesting there. It turns out he was able to read the contents of the EEPROM, and since it was not write protected, he could replace the standard URL with that of his own web site.

While it’s safe to say that without a new microcontroller the Webkeys probably can’t be used for anything more exciting than launching a browser, [Jjshortcut] can always reprogram the lot and drop them in random locations to drive some fresh traffic to his web site!

[Thanks, Wouter]

Improving Your Flight Sim Experience With Hall Effect Sensors

hall-effect-controls

[Gene Buckle] built himself a nice custom cockpit for playing Flight Simulator, but during use he found that the gimbal he constructed for the pitch and roll controls was nearly unusable. He narrowed the problem down to the potentiometers he used to read the angle of the controls, so he set off to find a suitable and more stable replacement.

He figured that Hall effect sensors would be perfect for the job, so he picked up a pair of Allegro 1302 sensors and began fabricating his new control inputs. He mounted a small section of a pen into a bearing to use as an input shaft, attaching a small neodymium magnet to either side. Since he wanted to use these as a drop-in replacement for the pots, he had to fabricate a set of control arms to fit on the pen segments before installing them into his cockpit.

Once everything was set, he fired up his computer and started the Windows joystick calibration tool. His potentiometer-based controls used to show a constant jitter of +/- 200-400 at center, but now the utility displays a steady “0”. We consider that a pretty good result!

[Thanks, Keith]

Coffee Table Puts On A Show Behind Smoked Glass

This coffee table is a real show-piece. It’s got a smoky glass surface that is hiding the LCD screen within. But what fun would it be if it could only play video? The rest of the enclosure houses all the parts necessary to make this living room centerpiece into a computer.

After the break you can see a video showing off each step of the build process. It starts by ridding the screen of its enclosure, and using what’s left to determine the size of the wood frame for the table. With the display firmly in place [Nate] sets to work position, mounting, and developing cooling solutions for the motherboard and the rest of the bits. He does nice work and ends up with a table that we’d be proud to feature in our homes.

Now he’s got a lot of computing power and a huge display, but isn’t something missing? How hard do you think it would be to add touch sensitive input to this? We’re wondering if the overlays used to make those Android touchscreens could be mounted on the underside of the glass?  Continue reading “Coffee Table Puts On A Show Behind Smoked Glass”

Building An EEPROM Programmer

Behold this ATtiny85 based EEPROM programmer. It seems like a roundabout way of doing things, but [Quinn Dunki] wanted to build to her specifications using tools she had on hand. What she came up with is an ATtinyISP USB programmer, pushing data to an ATtiny85, which then programs an EEPROM chip with said data.

The hardware is the next module for her Veronica 6502 computer build. When we last saw that project [Quinn] was planning to add persistent storage for the operating firmware. This will be in the form of an EEPROM programmed with this device. Using ISP and an ATtiny as a go-between means that she should have no problems reflashing the OS without removing the chip. But it all depends on how she designs the interface.

For example, she blew a whole bunch of time troubleshooting the device because garbage data was being written to the chip. In the end, having her manual bus programmer hooked up during the flashing operation was the culprit. Lesson learned, it’s onward and upward with the build.

We’ve been featuring [Quinn’s] projects a lot lately. That’s in part because they’re really interesting, but also because she does such a great job of documenting her experience.