New Year Habits – What Do You Do For Data Storage?

2020 is a year of reflection and avoiding regret, and one of the biggest practices we all know we should do better is back up our data. Inevitably there will be a corruption or accident, and we mourn the loss of some valuable data and vow to never let it happen again, and then promptly forget about good data retention practices.

I believe life is about acquiring memories, so it makes sense to me to try to archive and store those memories so that I can reflect on them later, but data storage and management is a huge pain. There’s got to be a better way (cue black and white video of clumsy person throwing up arms in disgust).

Nice Cloud You Have There; Shame if Something Happened to It

The teens of the century saw a huge shift towards cloud storage. The advantages of instantly backing up files and using the cloud as the primary storage for all your devices is appealing. It’s now easier to transfer files via the cloud than with a cable. With Google Docs and WordPress we have our most important documents and writing stored as database blobs on someone else’s servers. Facebook and Google and Flickr record all of our memories as photo albums. Unlimited storage is common, and indexing is so good that we can find photos with a vague description of their contents.

These things are instantly accessible, but lack permanence. Gone are newspaper clippings and printed photos discovered in a shoebox. When we aren’t in control of those services, they can disappear without any warning. Even some big offerings have packed up shop, leaving people scrambling to back up data before the servers were shut down. Google Plus is closed, Yahoo  Groups is closed, MySpace lost all content created prior to 2016, GeoCities closed in 2009, and Ubuntu One closed in 2014. It’s safe to say that no online content is safe from deletion. It’s also safe to say that cloud storage is a difficult location from which to extract your data.

With the risk of data leaks and privacy violations occurring daily, it’s also safe to say that some of your files should probably not be stored in the cloud in the first place. So, how do we do it well, and how do we get in the habit of doing it regularly?

Continue reading “New Year Habits – What Do You Do For Data Storage?”

Hackaday Links: January 5, 2020

It looks like the third decade of the 21st century is off to a bit of a weird start, at least in the middle of the United States. There, for the past several weeks, mysterious squads of multicopters have taken to the night sky for reasons unknown. Witnesses on the ground report seeing both solo aircraft and packs of them, mostly just hovering in the night sky. In mid-December when the nightly airshow started, the drones seemed to be moving in a grid-search pattern, but that seems to have changed since then. These are not racing drones, nor are they DJI Mavics; witnesses report them to be 6′ (2 meters) in diameter and capable of staying aloft for 90 minutes. These are serious professional machines, not kiddies on a lark. So far, none of the usual government entities have taken responsibility for the flights, so speculation is all anyone has as to their nature. We’d like to imagine someone from our community will get out there with radio direction finding gear to locate the operators and get some answers.

We all know that water and electricity don’t mix terribly well, but thanks to the seminal work of White, Pinkman et al (2009), we also know that magnets and hard drives are a bad combination. But that didn’t stop Luigo Rizzo from using a magnet to recover data from a hard drive. He reports that the SATA drive had been in continuous use for more than 11 years when it failed to recover after a power outage. The spindle would turn but the heads wouldn’t move, despite several rounds of percussive maintenance. Reasoning that the moving coil head mechanism might need a magnetic jump-start, he probed the hard drive case with a magnetic parts holder until the head started moving again. He was then able to recover the data and retire the drive. Seems like a great tip to file away for a bad day.

It seems like we’re getting closer to a Star Trek future every day. No, we probably won’t get warp drives or transporters anytime soon, and if we’re lucky velour tunics and Spandex unitards won’t be making a fashion statement either. But we may get something like Dr. McCoy’s medical scanner thanks to work out of MIT using lasers to conduct a non-contact medical ultrasound study. Ultrasound exams usually require a transducer to send sound waves into the body and pick up the echoes from different structures, with the sound coupled to the body through an impedance-matching gel. The non-contact method uses pulsed IR lasers to penetrate the skin and interact with blood vessels. The pulses rapidly heat and expand the blood vessels, effectively turning them into ultrasonic transducers. The sound waves bounce off of other structures and head back to the surface, where they cause vibrations that can be detected by a second laser that’s essentially a sophisticated motion sensor. There’s still plenty of work to do to refine the technique, but it’s an exciting development in medical imaging.

And finally, it may actually be that the future is less Star Trek more WALL-E in the unlikely event that Segway’s new S-Pod personal vehicle becomes popular. The two-wheel self-balancing personal mobility device is somewhat like a sitting Segway, except that instead of leaning to steer it, the operator uses a joystick. Said to be inspired by the decidedly not Tyrannosaurus rex-proof “Gyrosphere” from Jurassic World, the vehicle tops out at 24 miles per hour (39 km/h). We’re not sure what potential market for these things would need performance like that – it seems a bit fast for the getting around the supermarket and a bit slow for keeping up with city traffic. So it’s a little puzzling, although it’s clearly easier to fully automate than a stand-up Segway.

Hard Drive Data Recovery – Why Not DIY?

Hard drive failures can be tough to bear, particularly for the average person who doesn’t back up. When it comes to data recovery, there’s always those bleating from the sidelines that it’s a job that must be left to the professionals. However, this is Hackaday, not HireSomeoneADay, so [Matt]’s video on do-it-yourself hard drive repair is just what we like to see.

The video begins with plugging the non-functional drive into an external caddy, and using a microphone to listen to the sounds it makes. Upon analysis, [Matt] concludes that the drive is not spinning up, and suspects the heads may be stuck, causing the problem. When tapping the drive fails to unstick the heads, the next step is disassembly.

Despite the best advice from armchair commentators, this can be achieved at home without a clean room. [Matt] opens the drive carefully, and notes that the head is indeed stuck to the platter, instead of sitting in its home position. Using a screwdriver, the platters are rotated in their usual direction while gentle pressure is applied to pull the head away, being sure to use a light touch to avoid ripping the heads off entirely. With this done, the drive is reassembled and powered up. Amazingly, the repair is successful, and data is able to be recovered!

It’s important to note that this is a highly risky procedure, and not guaranteed to succeed. Truly valuable data should be left to the professionals, but if you’re skint or simply unbothered, it doesn’t hurt to have a go yourself. Be sure to avoid dust entering the drive, and take care not to touch the platters themselves. Of course, if you brick the device, you can always scavenge it for parts. Video after the break.

Continue reading “Hard Drive Data Recovery – Why Not DIY?”

Dreamcast Gets A Plug-n-Play Hard Drive Mod

The Dreamcast was a proud moment for Sega, at least initially, being the first console to launch of a new generation. Unfortunately this didn’t translate into massive sales, and the plug was pulled far earlier than expected. The console retains a dedicated fanbase to this day however, who continue to tinker with the hardware. [DreamcastChannel] is one of them, and put together a nifty plug-and-play hard drive mod.

The mod is based on earlier work, which consisted of manually soldering the 44 lines of an IDE cable on to the main Dreamcast motherboard. This allowed an IDE hard drive to be neatly mounted inside the shell, but [DreamcastChannel] knew it was possible to do better.

Starting from scratch, the GDROM optical drive assembly is gutted, leaving just its metal case and PCB. The IDE cable for the hard disk is then soldered to the pads on the PCB. A 3D printed mount is used to fix the hard drive to the metal case. This allows the entire assembly to slot neatly into the Dreamcast, using the GDROM’s original connector.

It’s a hack that makes putting a hard drive into the Dreamcast neat and tidy. Combined with a hacked BIOS and Dreamshell, it makes playing backup games a breeze. We’ve seen plenty of Dreamcast hacks before, too – the VMU is often a key candidate for attention. Video after the break.

Continue reading “Dreamcast Gets A Plug-n-Play Hard Drive Mod”

Hackers Turn Hard Drive Into Microphone That Can Listen In On Your Computer’s Fan Whine

As reported by The Register, hackers can now listen in on conversations happening around your computer by turning a hard drive into a microphone. There are caveats: the hack only works if these conversations are twice as loud as a blender, or about as loud as a lawn mower. In short, no one talks that loud, move along, nothing to see here.

The attack is to be presented at the 2019 IEEE Symposium on Security and Privacy, and describes the attack as a modification of the firmware on a disk drive to read the Position Error Signal that keeps read/write heads in the optimal position. This PES is affected by air pressure, and if something is affected by air pressure, you’ve got a microphone. In this case, it’s a terrible microphone that’s mechanically coupled to a machine that has a lot of vibrations including the spinning platter and a bunch of fans inside the computer. This is an academic exercise, and not a real attack, and either way to exfiltrate this data you need to root the computer the hard drive is attached to. It’s attacks all the way down.

The limiting factor in this attack is that it requires a very loud conversation to be held near a hard drive. To record speech, the researchers had to pump up the volume to 85 dBA, or about the same volume as a blender crushing some ice. Recording music through this microphone so that Shazam could identify the track meant playing the track back at 90 dBA, or about the same volume as a lawnmower. Basically, this isn’t happening.

The interesting bit of this hack isn’t using a hard drive as a microphone. It’s modifying the firmware on a hard drive to do something. We’ve seen some hacks like this before, but the latest public literature on hard drive firmware hacking is years old. If you’ve got a tip on how to hack hard drives, even if it’s to do something that’s horribly impractical, we’d love to see it.

This Clock Is Hard: No Arduino Needed

You always hear that people talk about the weather. But it seems to us we see more clocks than we do weather stations. A case in point is [frank_scholl’s] clock made from an old hard drive. We found it interesting that the clock has no microcontroller at all. The custom PCB is all digital and uses the line frequency to drive counters which, in turn, drive the motors.

The one catch is that you have to have a hard drive that uses a very particular motor scheme for this to work. The platter rotation shows the hour and the head’s track position counts off the minutes from 0 to 59. Two buttons can speed up either rotation for the purpose of setting the clock. You can see it all in the video below.

Continue reading “This Clock Is Hard: No Arduino Needed”

Fail Of The Week: The Semiconductor Lapping Machine That Can’t Lap Straight

It seemed like a good idea to build a semiconductor lapping machine from an old hard drive. But there’s just something a little off about [electronupdate]’s build, and we think the Hackaday community might be able to pitch in to help.

For those not into the anatomy and physiology of semiconductors, getting a look at the inside of the chip can reveal valuable information needed to reverse engineer a device, or it can just scratch the itch of curiosity. Lapping (the gentle grinding away of material) is one way to see the layers that make up the silicon die that lies beneath the epoxy. Hard drives designed to spin at 7200 rpm or more hardly seem a suitable spinning surface for a gentle lapping, but [electronupdate] just wanted the platter for its ultra-smooth, ultra-flat surface.

He removed the heads and replaced the original motor with a gear motor and controller to spin the platter at less than 5 rpm. A small holder for the decapped die was fashioned, and pinched between the platter hub and an idler. It gently rotates the die against the abrasive-covered platter as it slowly revolves. But the die wasn’t abrading evenly. He tried a number of different fixtures for the die, but never got to the degree of precision needed to see through the die layer by layer. We wonder if the weight of the die fixture is deflecting the platter a bit?

Failure is a great way to learn, if you can actually figure out where you went wrong. We look to the Hackaday community for some insight. Check out the video below and sound off in the comments if you’ve got any ideas.

Continue reading “Fail Of The Week: The Semiconductor Lapping Machine That Can’t Lap Straight”