2025 One Hertz Challenge: Blinking An LED The Very Old Fashioned Way

Making an LED blink is usually achieved by interrupting its power supply, This can be achieved through any number of oscillator circuits, or even by means of a mechanical system and a switch. For the 2025 One Hertz Challenge though, [jeremy.geppert] has eschewed such means. Instead his LED is always on, and is made to flash by interrupting its light beam with a gap once a second.

This mechanical solution is achieved via a disk with a hole in it, rotating once a second. This is driven from a gear mounted on a 4.8 RPM geared synchronous motor, and the hack lies in getting those gears right. They’re laser cut from ply, from an SVG generated using an online gear designer. The large gear sits on the motor and the small gear on the back of the disk, which is mounted on a bearing. When powered up it spins at 60 RPM, and the LED flashes thus once a second.

We like this entry for its lateral thinking simplicity. The awesome 2025 One Hertz Challenge is still ongoing, so there is still plenty of time for you to join the fun!

Continue reading “2025 One Hertz Challenge: Blinking An LED The Very Old Fashioned Way”

2025 One Hertz Challenge: Learn Morse Code One Second At A Time

Learning Morse Code is no longer a requirement for HAMs in many jurisdictions, but it’s still a nice skill to have. [I_void(warranties)] wanted to learn, but couldn’t find a trainer that fit his style. What to do but build it yourself? Since we’re in the midst of a challenge, he took up the gauntlet and turned his need to learn Morse into a 1 hertz Morse code game.

In concept it is quite simple: a message beeps out in Morse, with a corresponding LED flash, all in one second. The player then has one second to type think they heard. Get it done fast enough, and a character LCD will tell you if you scored.

The project is based around an Arduino Nano; thanks to easily-available libraries, a PS/2 keyboard can serve as input and a 2×16 LCD as feedback with no real effort expended. For the audible component of the Morse challenge, an 8-ohm speaker is driven right off a pin on the Arduino. We won’t claim this efficient design only took one second to put together, but it probably didn’t take too long.

Of course this trainer, unlike some we’ve seen, only helps you learn to listen to the stream of dots and dashes. None of the others ever tried to fit a One Hertz theme, or [I_void(warranties)]’s particular learning style. For some, decoupling send and receive might be just the ticket to finally learning Morse one second at a time.

2025 One Hertz Challenge: Drop The Beat (But Only At 60 BPM)

Mankind has been using water to mark the passage of time for thousands of years. From dripping stone pots in Ancient Egypt to the more mechanically-complicated Greco-Roman Clepsydrae, the history of timekeeping is a wet one — and it makes sense. As an incompressible fluid, water flows in very predictable patterns. If you fill a leaky pot with water and it takes an hour to drain, it will also take an hour the next time you try. One Hertz Challenge entrant [johnowhitaker] took this idea in a different direction, however, with an electromechanical clock that uses dripping water as an indicator.

This clock uses a solenoid to briefly pop the plunger out of a water-filled syringe. This allows a drop to fall from the tip, into a waiting beaker. In addition to the satisfying audio indication this produces, [johnowhitaker] added a bit of food coloring to the dripping water for visual flair. The entire thing is controlled by a Raspberry Pi Pico and a motor driver board, so if you’ve got some spare parts lying about and would like to build your own be sure to head over to the project page and grab the source code.

While this clock isn’t exactly here for a long time (either the syringe will eventually empty or the beaker will overflow), it’s certainly here for a good time. [John] and commenters on his project even have ideas for the next steps: a 1/60 Hz beaker changer, and a 1/600 Hz spill cleaner. Even so, the first couple of drops hitting the beaker produce a lovely lava lamp-esque cloud that is a joy to watch and has us thinking about other microfluidics projects we’ve seen.

And remember — it’s not too late to enter the 2025 One Hertz Challenge!

2025 One-Hertz Challenge: Clock Calibrator

Wall clocks! Are they very accurate? Well, sometimes they are, and sometimes they lose minutes a day. If you’ve got one that needs calibrating, you might like this device from [Lauri Pirttiaho].

Most cheap wall clocks use very similar mechanisms based around the Lavet-type stepper motor. These are usually driven by a chip-on-board oscillator that may or may not be particularly accurate.

[Lauri] desired a way to tune up these cheap clocks by using GPS-level timing accuracy. Thus began a project based around a CY8KIT evaluation board from Cypress. The microcontroller is paired with a small character LCD as a user interface, and hooked up to a cheap GPS module with an accurate 1-pulse-per-second (1PPS) timing output. The concept is simple enough. Clock drift is measured by using counters in the microcontroller to compare the timing of the GPS 1PPS output and the pulses driving the Lavet-type stepper motor. The difference between the two can be read off the device, and used to determine if the wall clock is fast or slow. Then one need only use a trimmer capacitor to tweak the wall clock’s pulse rate in order to make it more accurate.

Few of us spend much time calibrating low-cost wall clocks to high levels of accuracy. If that sounds like a fun hobby to you, or your name is Garrus, you would probably find [Lauri]’s device remarkably useful. Believe it or not, this isn’t the first clock calibrator we’ve seen, either. Meanwhile, if you’ve brewed up your own high-accuracy timing hardware, feel free to let us know on the tipsline.

RPI TinynumberHat9

2025 One Hertz Challenge: RPI TinynumberHat9

This eye-catching entry to the One Hertz Challenge pairs vintage LED indicators with a modern RPi board to create a one-of-a-kind clock. The RPI TinynumberHat9 by [Andrew] brings back the beautiful interface from high end electronics of the past.

This project is centered around the red AL304 and green ALS314V 7-segment display chips. These 7-segment displays were produced in the 1970s and 1980s in the Soviet Union; you can still find them, but you’ll have to do some digging as they are only becoming more rare. [Andrew] included the data sheet for these which was a good find, it is written in Russian but doesn’t hold any surprises, these tiny LEDs typically forward current is 5mA at 2V. One of the things that jumps out about these LEDs is the gold leads, a sure sign of being a high-end component of their day.

When selecting a driving chip for the LEDs, [Andrew] looked at the MAX7219 and HT16K33; he settled on the HT16K33 as it supports I2C as well as allows the easy addition of buttons to the HAT. Due to being driven by I2C, he was also able to add a Qwiic/Stemma I2C connector, so while designed initially to be a HAT for a Raspberry Pi Zero 2 W board, it can be connected to other things in the Qwiic/Stemma ecosystem.

Thanks [Andrew] for submitting this beautiful entry into the One Hertz Challenge. We love unique 7-segment displays, and so it’s pretty awesome to see 40-year-old display tech brought into the present.

 

2025 One-Hertz Challenge: A Clock Sans Silicon

Just about every electronic device has some silicon semiconductors inside these days—from transistors to diodes to integrated circuits. [Charles] is trying to build a “No-Silicon digital clock” that used none of these parts. It looks like [Charles] is on the way to success, but one might like to point out an amusing technicality. Let’s dive in to the clock!

Instead of silicon semiconductors, [Charles] is attempting to build a digital clock using valves (aka tubes). More specifically, his design relies on seven dekatrons, which are the basic counting elements of the clock. By supplying the right voltages to the various cathodes of the dekatrons, they can be made to step through ten (or sometimes twelve) stable states, used as simple memory elements which can be used as the basis for a timepiece. [Charles] will set up the first dekatron to divide down mains frequency by 5 or 6 to get down to 10 Hz, depending on whether the supply is 50 Hz or 60 Hz. The next dekatron will step down 10 times to 1 Hz, to measure seconds. The next two will divide by ten and six to count minutes, while a further two will divide the same way to create an impulse per hour. A final dekatron will divide by 12 to count the hours in a day.

Naturally, time will be displayed on Nixies. While silicon semiconductors are verboten, [Charles] is also considering the use of some germanium parts to keep the total tube count down when it comes to supporting hardware. Also, [Charles] may wish to avoid silicon, but here’s the thing about tubes. They use glass housings, and glass is made of silicon.

Cheeky technicalities aside, it’s a great project that promises to create a very interesting clock indeed. Progress is already steaming along and we can’t wait to see the finished product. We’ve seen dekatrons put to good use before, too. If you’re cooking up your own practical projects with mid-century hardware, don’t hesitate to let us know!

2025 One Hertz Challenge: A Discrete Component Divider Chain

Most of us know that a quartz clock uses a higher frequency crystal oscillator and a chain of divider circuits to generate a 1 Hz pulse train. It’s usual to have a 32.768 kHz crystal and a 15-stage divider chain, which in turn normally sits inside an integrated circuit. Not so for [Bobricius], who’s created just such a divider chain using discrete components.

The circuit of a transistor divider is simple enough, and he’s simply replicated it fifteen times in surface mount parts on a PCB with an oscillator forming the remaining square in a 4 by 4 grid. In the video below the break we can see him measuring the frequency at each point, down to the final second. It’s used as the timing generator for an all transistor clock, and as we can see it continues that trend. Below the break is a video showing all the frequencies in the chain.

This project is part of our awesome 2025 One Hertz Challenge, for all things working on one second cycles. Enter your own things that go tick and tock, we’d live to see them!

Continue reading “2025 One Hertz Challenge: A Discrete Component Divider Chain”