Priceless Paintings – Scanned And Printed In 3D

painting

When we think of works by Van Gogh and Rembrandt, most of us remember a picture, but we aren’t accustomed to seeing the actual painting. [Tim Zaman], a scientist at Delft University of Technology in the Netherlands, realized that the material presence of the paint conveys meaning as well. He wanted to create a lifelike reproduction in full dimension and color. While a common laser-based technique could have been used for depth mapping, resolution is dependent on the width of the line or dot, and the camera cannot capture color data simultaneously with this method. In his thesis, [Tim] goes into great detail on a hybrid imaging technique involving two cameras and a projector. He and his team eventually used two 40-megapixel Nikon cameras in conjunction with a fringe projector to capture a topographical map with in-plane resolution of  50 μm, and depth resolution of 9.2 μm.

We can’t find a lot of information on the printing process they used, other than references to high-resolution 3D printers by Océ (a Canon company). That said, [Tim] has provided a plethora of images of some of the reproductions, and we have to say they look amazing. The inclusion of depth information takes this a big step further than that gigapixel scanning setup we saw recently.

Check out the BBC interview with Tim, as well as time lapse videos of the scanning and printing process after the break.

Continue reading “Priceless Paintings – Scanned And Printed In 3D”

Sound Blimp Makes Camera Quieter And Waterproof

soundBlimp

The D-SLR “crunch” sound can be pretty satisfying. Your camera has moving parts and those cell-phone amateurs can eat your shutter actuation. If you’re a professional photographer behind the scenes on a sound stage or at any film shoot, however, your mirror slapping around is loud enough to get you kicked off the set. [Dan Tábar] needed his D800 to keep it down, so he made his own sound blimp to suppress the noise. As an added bonus, it turns out the case is waterproof, too!

[Dan] got the idea from a fellow photographer who was using a prefab Jacobson blimp to snap pictures in sound-sensitive environments. Not wanting to spend $1000, he looked for a DIY alternative. This build uses a Pelican case to house the body of the camera and interchangeable extension tubes to cover lenses of various sizes. [Dan] took measurements and test-fit a paper cutout of his D800 before carving holes into the Pelican case with a Dremel tool. One side got a circular hole for the extension tubes, while the other received a rectangular cut for the camera’s LCD screen and a smaller circle for the viewfinder.

Lexan serves as a window for all of the open ends: LCD, viewfinder, and the lens. [Dan] snaps pictures with a wireless trigger, saving him the trouble of drilling another hole. You can hear the D800 before and after noise reduction in a video after the break, along with a second video of [Dan] trying out some underwater shots. If you’d rather take a trip back in time, there’s always the 3D printed pinhole camera from last week.

Continue reading “Sound Blimp Makes Camera Quieter And Waterproof”

Stealth Peephole Camera Watches Your Front Door

In this week’s links post we mentioned an over-powered DSLR peephole that purportedly cost $4000. So when we saw this tip regarding a relatively inexpensive digital peephole, we thought some of you might be a bit more interested.

The hardware is quite simple; a decent webcam, a Raspberry Pi, and a powered USB hub. The camera gets stripped down to its PCB and hidden inside the door itself. Even if you see this from the inside it’s just a suspicious-looking wire which wouldn’t make most people think a camera was in use.

On the software side of things, [Alex] set up his Raspberry Pi as a 24/7 webcam server to stream the video online. Unlike using a cheap wireless CCTV camera, his video signals are secure. He then runs Motion, a free software motion detector to allow the camera to trigger events when someone comes sneaking by. It can be setup to send you a text, call you, play an alarm, take a picture, record a video… the list goes on. His blog has a full DIY guide if you want to replicate this system. We just hope you have a stronger door!

We covered a similar project back in 2011, but it had made use of real server instead of an inexpensive Raspberry Pi.

[Thanks Alex!]

Digital Camera Becomes Video Transmitter

canon

In the arena of high altitude balloons, Canon’s PowerShot series of digicams are the camera du jour for sending high into the stratosphere. There’s a particular reason for this: these cameras can run the very capable CHDK firmware that turns a $100 digicam into a camera with a built-in intervalometer along with a whole bunch of really cool features. It appears this CHDK firmware is much more powerful than we imagined, because [Chris] is now transmitting pictures taken from a Canon a530 to the ground, using only the CHDK firmware and a cheap radio module.

These PowerShot cameras have an ARM processor inside that runs VxWorks, a minimal but very capable OS for embedded devices and Mars rovers. By tying in to the Tx and Rx lines of the camera, [Chris] can issue commands to the OS, change settings, and even install his own code.

With the help of [Phil Heron]’s SSDV encoder written in C, [Chris] was able to get the camera to transmit images  with a small radio transmitter that fits in the battery compartment. Right now, [Chris] has only built the CHDK + SSDV for the Canon a530, but with how useful this build is, we expect to see an improved version very shortly.

Four Meter Light Paintings

HaD

We’ve seen some light painting before – waving a microcontroller and LED strip in front of a camera is a very interesting project after all. [Saulius]’ light painting stick is unlike anything we’ve seen before, though. It’s huge – four meters high, and is also very flexible in the field, drawing images served up from a smart phone.

To get his pictures onto his light painting stick, [Saulius] used the very cool Carambola, an exceedingly small board that also runs Python. The images were converted to a 128xWhatever .BMP file served to the Carambola over WiFi with a smart phone, Since the Carambola runs Linux, sometimes a kernel interrupt would mistakenly restart the drawing process. [Saulius] found a way around that by writing the drawing code in C and wrapping that in a Python module. The speed of C and the flexibility of Python, who could ask for more.

On the project page, you can see [Saulius] pulling off some very cool light paintings. Even though the Hackaday logo is the best way to get on the front page here, this pic is probably the most impressive

Use Your New-timey Printer To Make An Old-timey Camera

3d-printed-pinhole-camera

Here’s something to show people who don’t realize the power of 3D printing. This pinhole camera has one moving part which reveals the pinhole, letting in light to expose the 4×5 film inside.

It’s a near perfect roundup of all the qualities a 3D printer has to offer. The build centers around a 4×5 film holder which can be acquired used or as surplus. This drives home the concept of having the power to replace parts (in this case the entire camera) that fit with existing pieces (the film holder). The picture above is big enough that you can see the layers on the pyramid shape, but the structural pieces around the frame also let the uninitiated see that you can print more than just solid blocks. And finally, since it’s up for download on Thingiverse its a good example of how the printing community shares and builds on each others’ work.

Does it take quality photos? We have no idea. So far we didn’t see any example pictures. But really, if you’re looking for top quality you might want to build your own digital camera. Here’s one that uses a 14 megapixel sensor.

Jack The DVD Ripping Robot

[Andy] had a fairly large problem on his hands. For the last 15 years, he’s been collecting DVDs, and since he began, he’s run out of space on his shelves for these miraculous plastic discs. Everything’s going to the cloud now, so he decided to build a media server, replete with rips of all his DVDs. As anyone who has ever tried to rip a movie knows, this can be a very long and tedious process. His solution to this should be something near and dear to all of us – he decided to build a robot to rip all his DVDs automatically.

With a brand new 3D printer, [Andy] set to work on designing Jack the Ripper Bot. The design has two trays mounted to a standard computer DVD drive, an ‘in’ tray and an ‘out’ tray. The frame of the machine bolts directly to the drive, and the entire contraption is driven by only three standard hobby servos.

The robot is driven by a Raspberry Pi, but the ripping actually takes place on an old laptop. [Andy] says it takes about an hour and a quarter to rip a DVD, so a full ‘in’ tray of 24 discs means about 28 hours of ripping time. Feeding the machine once a day is a lot better than returning to the computer every hour or so, we think.

All the STLs for the printed parts and the software for the Raspi and computer are up on [Andy]’s github, should anyone want to upgrade this to a Blu Ray ripper.

Thanks [Stephen] for sending this one in.

Continue reading “Jack The DVD Ripping Robot”