Constructable: Interactive Laser Cutting

constructable-interactive-lasercutting

Do you miss the old days of making things by hand, without the aid of a computer? Do you remember actually drafting drawings by hand? Well, the folks over at the Human-Computer Interaction group from the Hasso Plattner Institute have come up with a rather novel idea, combining manual input via laser pointers, to cut designs with a laser cutter. Sound familiar? A few days ago we shared another cool project on Laser Origami from the same people.

So what exactly is it? It’s an interactive drafting table which can produce very precise physical outputs from a rather imprecise input method. By using specific laser pointers, the user can instruct the laser cutter to cut, trace, or etch designs into the workpiece. A camera picks up the laser pointer and then the software cleans it up, by straightening lines, connecting the dots, etc. While only so much can be determined by the included video, it’s pretty impressive to see what the software comes up with while cutting the design… We can’t really imagine the programming behind it!

Between this and PACCAM: Interactive 2D Part Packing, it looks like laser cutting is going to get a whole lot more user friendly! Stick around after the break to see it in action, the results are quite impressive!

Continue reading “Constructable: Interactive Laser Cutting”

Freeside’s Infinity Portal

sidebyside

If infinity mirrors aren’t cool enough, the 10-foot-tall infinity portal should blow you away. Strictly speaking, the mirror itself is only 7’x4′, but you’ll still find yourself engulfed in the archway. The portal began as a simple prototype that we covered earlier this summer, which was just a frame of 2×4’s, some acrylic and LED strips. It works by putting lights between a two-way mirror and another mirror, reflecting most light internally and creating the illusion of depth.

The giant archway also began as a small-scale prototype, its shape and engravings carved out by a laser cutter. Once they were satisfied with its design, it was time to scale things up. The full-sized portal needed a a tremendous amount of stability, so the guys at Freeside built the base from wooden palettes. They needed the portal to travel to a few different venues, so the rest of the frame breaks down into components, including a removable wooden frame from which the acrylic hangs. A Teensy 3.0 runs all the WS2812 LED strips, which were chosen because each of their LEDs is individually addressable.

Check out the video below for an extremely detailed build log, which should give you a better idea of how massive and impressive this portal really is!

Continue reading “Freeside’s Infinity Portal”

Laser Origami!

One of our tipsters just sent us a link to some fascinating videos on a new style of rapid prototyping — Laser Origami!

The concept is fairly simple, but beautifully executed in the included videos. A regular laser cutter is used to cut outlines of objects in clear lexan, then, by unfocusing the laser it slowly melts the bend lines, causing the lexan to fold and then solidify into a solid joint. It becomes even more interesting when they add in a servo motor to rotate the workpiece, allowing for bends of angles other than 90 degrees!

Depending on the part you are designing, this method of rapid prototyping far exceeds the speeds of a traditional 3D printer. The part shown in the included image could be printed in about 4 hours, or using the laser, cut and folded in 4 minutes flat!

Stick around after the break to see this awesome demonstration of the technology!

Continue reading “Laser Origami!”

Impressive Laser Harp

laser harp

We stumbled onto this impressive laser harp setup after browsing random YouTube videos late at night. Besides making an awesome laser harp, [Eric] can even play it too!

If you’ve never seen one of these before you’re in for a treat! A laser harp is a digital instrument that requires a synthesizer to create music. There are two main varieties, framed and open. The framed type use light sensors at the end of the beams to create the digital signal to be converted to the various tones. The open kind is a lot more complex, but much cooler — it relies on the laser light being reflected back from the player’s hand to create the signal. This allows for varying tones depending on the distance to the sensor.

Stick around after the break to see it in action as [Eric] breaks it down, laser style.

Continue reading “Impressive Laser Harp”

Microslice: The Tiny Arduino Laser Cutter

[SilverJimmy] already had a full-sized 50 watt laser cutter, but he decided to try his hand at putting together something smaller and microcontroller-driven. The result is this adorable little engraver: the MicroSlice.

To keep the design simple, [SilverJimmy] opted for a fixed cutting table, which meant moving the cutting head and the X-Axis as a unit along the Y-Axis. The solution was to take inspiration from gantry cranes. He snagged a couple of stepper motors with threaded shafts, designed the parts in Inkscape, then fired up his full-size cutter to carve out the pieces. An Arduino Uno and the relays for the laser and fans sit on the MicroSlice’s bottom platform, and two EasyDriver motor controllers sit above them on the next layer.

Swing by the Instructables for more details including the source code, and to see a video of the engraver below. [SilverJimmy] sourced his laser from eBay, but check out the engraver from earlier this year that used a DVD diode.

Continue reading “Microslice: The Tiny Arduino Laser Cutter”

Hacking A Streetlight With Lasers

$20, some spare parts and a bit of mischief was a small price for [Chris] to pay for a reprieve from light pollution with this remote control laser hack. The streetlight in front of his house has a sensor that faces westward, and flips the lamp on once the sun has disappeared over the horizon. As it turns out, [Chris’s] third floor window is due west of this particular lamp, meaning he takes the brunt of its illumination but also conveniently places him in a prime location for tricking the sensor.

According to [Chris], the lamp’s sensor requires two minutes of input before it will switch off and stay off for around 30 seconds before cycling on again. The lamp does not zap straight to full brightness, though; it takes at least a minute to ramp up. [Chris] recalled a hack from a few years ago that essentially used LED throwies tacked onto the sensors with putty to shut off lamps for a guerrilla drive-in movie, but the sensors on those lamps were at the base and easily accessed. [Chris] needed to reach a sensor across the block and nearly three stories tall, so he dug around his hackerspace, found a 5V 20mA laser diode, and got to work building a solution.

[Chris] 3D printed a holder for the laser and affixed it via a mounting bracket to the wall near his third floor window, pointing it directly at the street lamp’s sensor. He plugged the laser’s power supply into an inexpensive remote control outlet, which allowed him to darken the street lamp at a touch of a button. This is certainly a clever and impressive hack, but—as always—use at your own risk. Check out a quick demo video after the break.

Continue reading “Hacking A Streetlight With Lasers”

Woodcut Stamps And Conductive Ink

circuit

Even though it’s been a while since the Rome Maker Faire, we’re still getting some tips from the trenches of Europe’s largest gathering of makers. One of these is a 30-minute experiment from [Luong]. He wondered if it would be possible to create SMD circuit boards by using a 3D printer to fabricate a stamp for conductive ink.

[Luong] told this idea  to a few folks around the faire, and the idea eventually wound up in the laps of the guys from TechLab. the Chieri, Italy hackerspace. They suggested cutting a wooden stamp using a laser cutter and within 30 minutes of the idea’s inception a completed stamp for an Atari Punk Console PCB was in [Luong]’s hands.

As an experiment, the idea was a tremendous success. As a tool, the stamp didn’t perform as well as hoped; the traces didn’t transfer properly, and there’s no way this wooden laser cut stamp could ever create usable PCBs.

That being said, we’re thinking [Luong] is on the right track here with printed PCBs. One of the holy grails of home fabrication is the creation of printed circuit boards, and even a partial success is too big to ignore.

This idea for CNC-created PCB stamps might work with a different material – linoleum or other rubber stamp material, or even a CNC milled aluminum plate. If you have any ideas on how to use this technique for PCB creation, leave a note in the comments, or better yet, try it out for yourself.