Meet Mr. Haas, He Makes Eyes

Here’s a story of an ocularist who makes prosthetic eyes from glass. Obviously here’s a necessary and important service, but we find it surprising that this seems something of a dying art. [Mr. Haas] lives in the UK but notes that most glass eye makers have been German, and tend to pass the trade down to their children. With that father-to-son daughter transfer of knowledge becoming less common these days we wonder just how many people know how to do this any longer.

But don’t despair, it’s not that there won’t be a source for ocular prosthesis, as acrylic eyes are quite common. But what we see in the video after the break is breathtaking and we hate to see the knowledge and experience lost the way vacuum tube manufacture and even common blacksmithing have.

Continue reading “Meet Mr. Haas, He Makes Eyes”

Electrodes Turn Your Eyelids Into 3D Shutter Glasses

[Jonathan Post] has a way to watch 3D video without wearing shutter glasses but it might be kind of a hard product to break into the market. As you can see above, a pair of electrodes are stuck on a viewer’s eyelids, using electricity to alternately close each eye. The video after the break shows a demonstration of this technology. Obviously a camera can’t capture the image that the viewer sees, but this man describes a perfect 3D image. This reminds us of those ab exercisers that use electrodes to stimulate the muscles. Do you think a 3 hour epic would leave your eyelids tired and sore, eventually resulting and a steroid-esque muscle-ridden face?

Edit from [Caleb]: Judging from the comments, some people believe this to be an absolute impossibility. While we concur that this example is pretty silly (what’s powering those electrodes?), we invite you to watch [Daito Manabe]’s facial electrodes fun.

Continue reading “Electrodes Turn Your Eyelids Into 3D Shutter Glasses”

EEG The Locomotion

The use of brainwaves as control parameters for electronic systems is becoming quite widespread. The types of signals that we have access to are still quite primitive compared to what we might aspire to in our cyberpunk fantasies, but they’re a step in the right direction.

A very tempting aspect of accessing brain signals is that it can be used to circumvent physical limitations. [Jerkey] demonstrates this with his DIY brain-controlled electric wheelchair that can move people who wouldn’t otherwise have the capacity to operate joystick controls. The approach is direct, using a laptop to marshall EEG data which is passed to an arduino that simulates joystick operations for the control board of the wheelchair. From experience we know that it can be difficult to control EEGs off-the-bat, and [Jerky]’s warnings at the beginning of the instructable about having a spotter with their finger on the “off” switch should well be followed. Maybe some automated collision avoidance would be useful to include.

We’ve covered voice-operated wheelchairs before, and we’d like to know how the two types of control would stack up against one another. EEGs are more immediate than speech, but we imagine that they’re harder to control.

It would be interesting albeit somewhat trivial to see an extension of [Jerkey]’s technique as a way to control an ROV like Oberon, although depending on the faculties of the operator the speech control could be difficult (would that make it more convincing as an alien robot diplomat?).

Make Your Own TSA “Naked” Scanner

Have you ever wanted to ability to see through objects? Perhaps you have been looking for something special for your own personal TSA role playing adventures? Well, [Jeri Ellsworth] has your back. She has managed to cobble together her own millimeter centimeter wave scanner using a hacked set of Feed Horns (like from a satellite dish) to create the image. By reversing the power transistor on one of the Feed Horns, one of the horns is made into a transmitter, while one of the other horns stays as a receiver. This data is then fed into a FPGA by way of an A2D converter, where an image is assembled when the scanner is moved over a surface. X and Y axis tracking is handled by an optical mouse also controlled by the FPGA, and the whole setup is output to a monitor.

Right now there is no text write up, or any specific details as the hack will vary by whatever Feed Horn is available. However, the video does a great job of explaining some of the electrical concepts, as well as some very useful schematics. Be sure to watch the whole video after the break, and don’t blame us for any health complications, whether the radiation is ionizing or not.

Continue reading “Make Your Own TSA “Naked” Scanner”

Rat Propulsion Via Brain-machine Interface

Our little red-eyed friend can drive this vehicle around with his mind. WITH HIS MIND, MAN!

This is the product of research into adaptive technologies. The process is pretty invasive, implanting neural electrodes in the motor cortex of the brain. The hope is that some day this will be a safe and reliable prospect for returning mobility to paralysis victims.

We found it interesting that the vehicle was trained to react to the rats’ movements. They were allowed to move around a test space under their own power while brain signals were monitored by the electrodes. Video tracking was used to correlate their movements with those signals, and that data is used to command the motors for what the Japanese researchers are calling RatCar.

We can see the possibilities opening up for a mechanized cockroach v. RatCar free-for-all. Something of a battlebots with a live tilt. But we kid, this is actually quite creepy.

[via Neatorama and PopSci]

Magnets Capable Of Brain Hacks

It has been recently discovered that all of the snap decisions that your brain makes on which hand to use to do simple tasks, such as picking up an object from a table, can now be automatically decided for you.  This is done using magnetic stimulation that is applied using transcranial magnetic stimulation or TMS.  This TMS will affect the brains ability to process motor movements and reduces the chances that the right hand will be chosen over the left.  This major discovery was found by PNAS (Proceedings of the National Academy of Sciences of the United States of America) who hopes to use this later on for rehabilitating stroke victims, making them using the limbs that may suffer from the event.  Here is to hoping that an in home product will be released in the future so children can become ambidextrous in everything they do.   It seems like that is a way off but it does seem more natural than most hacks to your body.

Via [iO9]

Wireless Electrocardiography… With IPhone

This module is a sensor package for monitoring the electrical activity of the heart. It is the product of an effort to create a Wireless Body Sensor Network node that is dependable while consuming very little electricity, which means a longer battery life. To accomplish this, the microcontroller in charge of the node compresses the data (not usually done with wireless ECG hardware) so that the radio transmissions are as short and infrequent as possible.

[Igor] sent us this tip and had a short question and answer session with one of the developers. It seems they are working with the MSP430 chips right now because of their low power consumption. Unfortunately those chips still draw a high load when transmitting so future revisions will utilize an alternative.

Oh, and why the iPhone? The device that displays the data makes little difference. In this case they’re transmitting via Bluetooth for a real-time display (seen in the video after the break). This could be used for a wide variety of devices, or monitored remotely via the Internet.

Continue reading “Wireless Electrocardiography… With IPhone”