A Unique Linear Position Sensor Using Magnetostriction

To the extent that you’re familiar with magnetostriction, you probably know that it’s what makes big transformers hum, or that it’s what tips you off if you happen to walk out of a store without paying for something. But magnetostriction has other uses, too, such as in this clever linear position sensor.

Magnetostriction is just the tendency for magnetic materials to change size or shape slightly while undergoing magnetization, thanks to the tiny magnetic domains shifting within the material while they’re aligning. [Florian B.]’s sensor uses a side effect of magnetostriction known as the Wiedenmann effect, which causes a wire to experience a twisting force if a current pulse is applied to it in a magnetic field. When the current pulse is turned off, a mechanical wave travels along the wire to a coil, creating a signal. The difference in time between sending the pulse and receiving the reflection can be used to calculate the position of the magnet along the wire.

To turn that principle into a practical linear sensor, [Florian B.] used nickel wire stretched tightly down the middle of a PVC tube. At one end is a coil of copper magnet wire, while the other end has a damper to prevent reflections. Around the tube is a ring-shaped cursor magnet, which can move up and down the tube. An exciter circuit applies the current pulse to the wire, and an oscilloscope is used to receive the signal from the wire.

This project still appears to be in the prototype phase, as evidenced by the Fischertechnik test rig. [Florian] has been working on the exciter circuit most recently, but he’s done quite a bit of work on optimizing the cursor magnet and the coil configuration, as well as designs for the signal amplifier. It’s a pretty neat project, and we’re looking forward to updates.

If you need a deeper dive into magnetostriction, [Ben Krasnow] points the way.

Scrapyard Vacuum Dehydrator Sucks The Water From Hydraulic Oil

Anyone who has ever had the misfortune of a blown head gasket knows that the old saying “oil and water don’t mix” is only partially true. When what’s coming out of the drain plug looks like a mocha latte, you know you’re about to have a very bad day.

[SpankRanch Garage] recently found himself in such a situation, and the result was this clever vacuum dehydrator, which he used to clean a huge amount of contaminated hydraulic fluid from some heavy equipment. The machine is made from a retired gas cylinder welded to a steel frame with the neck pointing down. He added a fill port to the bottom (now top) of the tank; as an aside, we had no idea the steel on those tanks was so thick. The side of the tank was drilled and threaded for things like pressure and temperature gauges as well as sight glasses to monitor the process and most importantly, a fitting for a vacuum pump. Some valves and a filter were added to the outlet, and a band heater was wrapped around the tank.

To process the contaminated oil, [Spank] glugged a bucket of forbidden milkshake into the chamber and pulled a vacuum. The low pressure lets the relatively gentle heat boil off the water without cooking the oil too badly. It took him a couple of hours to treat a 10-gallon batch, but the results were pretty stark. The treated oil looked far better than the starting material, and while it still may have some water in it, it’s probably just fine for excavator use now. The downside is that the vacuum pump oil gets contaminated with water vapor, but that’s far easier and cheaper to replace that a couple hundred gallons of hydraulic oil.

Never doubt the hacking abilities of farmers. Getting things done with what’s on hand is a big part of farm life, be it building a mower from scrap or tapping the power of the wind.

Continue reading “Scrapyard Vacuum Dehydrator Sucks The Water From Hydraulic Oil”

Cute Face Tells You How Bad The Air Quality Is

You can use all kinds of numbers and rating systems to determine whether the air quality in a given room is good, bad, or somewhere in between. Or, like [Makestreme], you could go for a more human visual interface. He’s built a air quality monitor that conveys its information via facial expressions on a small screen.

Named Gus, the monitor is based around a Xiao ESP32-C3. It’s hooked up with the SeeedStudio Grove air quality sensor, which can pick up everything from carbon monoxide to a range of vaguely toxic and volatile gases. There’s also a THT22 sensor for measuring temperature and humidity. It’s all wrapped up in a cute 3D-printed robot housing that [Makestreme] created in Fusion 360. A small OLED display serves as Gus’s face.

The indications of poor air quality are simple and intuitive. As “Gus” detects poor air, his eyelids droop and he begins to look more gloomy. Of course, that doesn’t necessarily tell you what you should do to fix the air quality. If your issue is pollution from outside, you’ll probably want to shut windows or turn on an air purifier. On the other hand, if your issue is excess CO2, you’ll want to open a window and let fresh air in. It’s a limitation of this project that it can’t really detect particulates or CO2, but instead is limited to CO and volatiles instead. Still, it’s something that could be worked around with richer sensors a more expressive face. Some will simply prefer hard numbers, though, whatever the case. To that end, you can tap Gus’s head to get more direct information from what the sensors are seeing.

We’ve seen some other great air quality projects before, too, with remarkably similar ideas behind them. Video after the break.

Continue reading “Cute Face Tells You How Bad The Air Quality Is”

DIY Microwave Crucibles

You know the problem. You are ready to melt some metal in your microwave oven, and you don’t have any crucibles. Not to worry. [Shake the Future] will show you how to make your own. All you need is some silicon carbide, some water glass (sodium silicate), and some patience.

The crucible takes the shape of a glass container. Don’t get too attached to it because the glass will break during the crucible construction. You can also use 3D-printed forms.

Continue reading “DIY Microwave Crucibles”

USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin

The Universal Serial Bus. The one bus to rule them all.  It brought peace and stability to the world of computer peripherals. No more would Apple and PC users have to buy their own special keyboards, mice, and printers. No more would computers sprout different ports for different types of hardware. USB was fast enough and good enough for just about everything you’d ever want to plug in to a computer.

We mostly think of USB devices as being plug-and-play; that you can just hook them up and they’ll work as intended. Fiddle around around with some edge cases, though, and you might quickly learn that’s not the case. That’s just what I found when I started running complicated livestreams from a laptop…

Continue reading “USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin”

Why Not Build Your Quadcopter Around An Evaluation Board?

Quadcopters are flying machines. Traditionally, that would mean you’d optimize the design for lightweight and minimum drag, and you’d do everything in a neat and tidy fashion. The thing is, brushless motors and lithium batteries are so power-dense that you really needn’t try so hard. A great example of that is this barebones quadcopter build from [hebel23] all the way back in 2015.

The build is based around the STM32F4 Discovery Board, which [hebel23] scored as a giveaway at Electronica in Munich way back when. It’s plopped on top of a bit of prototyping board so it can be hooked up to the four controllers driving the motors at each corner. The frame of the quadcopter similarly uses cheap material, in the form of alloy profiles left over from an old screen door. Other equipment onboard includes a GY-273 electronic compass module, a MPU6050 3-axis gyroscope and accelerometer to keep the thing on the straight and level, and the Fly Sky R9B RC receiver for controlling the thing.

It might look crude, but it gets off the ground just fine. We’ve seen quadcopters using the STM32 in more recent years with more refined designs, but there’s something amusingly elegant about lacing one together with an evaluation board and some protoboard in the middle. If you’re working on your own flying projects, don’t hesitate to notify the tipsline!

Copper Candle Burns Forever… Just Add Fuel

[Zen Garden Oasis] wanted to heat and light a space using a candle. But candles aren’t always convenient since they burn down and, eventually, you must replace them. So he built copper candles using a common copper pipe and an old glass jar. Of course, the candle still takes fuel that you have to replace, but the candle itself doesn’t burn down.

The basic idea is that the copper tube holds a high-temperature carbon wick that stays saturated with fuel. The fuel burns, but the wick material doesn’t. The copper part is actually concentric with a 3/4-inch pipe mostly enclosing a 1/2-inch pipe.

Continue reading “Copper Candle Burns Forever… Just Add Fuel”