32C3: So You Want To Build A Satellite?

[INCO] gave this extremely informative talk on building a CubeSat. CubeSats are small satellites that piggyback on the launches of larger satellites, and although getting a 10 cm3 brick into orbit is cheap, making it functional takes an amazing attention to detail and redundant design.

[INCO] somehow talks through the entire hour-long presentation at a tremendous speed, all the while remaining intelligible. At the end of the talk, you’ve got a good appreciation for the myriad pitfalls that go along with designing a satellite, and a lot of this material is relevant, although often in a simpler form, for high altitude balloon experiments.

satellite_2-shot0002CubeSats must be powered down during launch, with no radio emissions or anything else that might interfere with the rocket that’s carrying them. The satellites are then packed into a box with a spring, and you never see or hear from them again until the hatch is opened and they’re pushed out into space.

[INCO] said that 50% of CubeSats fail on deployment, and to avoid being one of the statistics, you need to thoroughly test your deployment mechanisms. Test after shaking, being heated and cooled, subject to low battery levels, and in a vacuum. Communication with the satellite is of course crucial, and [INCO] suggests sending out a beacon shortly after launch to help you locate the satellite at all.

satellite_2-shot0003Because your satellite is floating out in space, even tiny little forces can throw it off course. Examples include radiation pressure from the sun, and anything magnetic in your satellite that will create a torque with respect to the Earth’s magnetic field. And of course, the deployment itself may leave your satellite tumbling slightly, so you’re going to need to control your satellite’s attitude.

Power is of course crucial, and in space that means solar cells. Managing solar cells, charging lithium batteries, and smoothing out the power cycles as the satellite enters the earth’s shadow or tumbles around out of control in space. Frequent charging and discharging of the battery is tough on it, so you’ll want to keep your charge/discharge cycles under 20% of the battery’s nominal capacity.

mpv-shot0001In outer space, your satellite will be bombarded by heavy ions that can short-circuit the transistors inside any IC. Sometimes, these transistors get stuck shorted, and the only way to fix the latch-up condition is to kill power for a little bit. For that reason, you’ll want to include latch-up detectors in the power supply to reset the satellite automatically when this happens. But this means that your code needs to expect occasional unscheduled resets, which in turn means that you need to think about how to save state and re-synchronize your timing, etc.

In short, there are a ridiculous amount of details that you have to attend to and think through before building your own CubeSat. We’ve just scratched the surface of [INCO]’s advice, but if we had to put the talk in a Tweet, we’d write “test everything, and have a plan B whenever possible”. This is, after all, rocket science.

Is Robot Butter Better Butter?

Humans have been making butter for thousands of years. If you have a cooperative cow or sheep and a means to agitate her milk, butter is not far behind. So why would you employ a $15,000 industrial robot to make butter? Because – robot butter!

Actually, Robutter is a design experiment by [Stephan], [Philipp], and [Jonas] to explore where craft ends and industrial processes begin, and to see how automation adds or removes values from traditional products. It’s a fair question, given that butter can be churned with everything from animal skins to massive continuous churns. So the team programmed [DIRK], a Fanuc LR Mate 200ic which is normally more at home on an assembly line, to carefully agitate a container of cream. After a bit of fiddling they found the optimal position and movements to produce a delicate butter that looks pretty tasty. The video after the break shows the process and the results, but sadly there’s no taste test of the Robutter against grocery store butter.

It may come as a surprise that Hackaday appears never to have featured a butter making project before. Sure, we’ve got a lot of food hacks, most of which seem to involve beer or coffee. But we did run across a recent article on a buttermilk pancake-making robot that you might like to check out.

Continue reading “Is Robot Butter Better Butter?”

Project Giant Robot Arm

[Antoniopenamaria] is working on a giant robot arm. The beauty is, he’s posting a step-by-step guide (translated) of his entire journey from start to finish.

Why does he want to build a giant robot arm? Well, the idea originally came to him a few years ago when he was soldering something together and thought, “Man, I could really use another hand!”. So he got out a Meccano set, and built a mini robot arm. Nothing fancy, but it worked. From there, he decided to program it, and was able to teach it to move things from point A to point B… as he continued to expand on his little project, the vision grew, and now he’s working on project D.I.M.E.R. — a giant robot arm.

Continue reading “Project Giant Robot Arm”

3D Printed RC Servo To Linear Actuator Conversion

RC servos are handy when you need to rotate something. You can even modify them to rotate continuously if that’s what you need. However, [Roger Rabbit] needed linear motion, but wanted the simple control afforded by an RC servo. The solution? A 3D printed housing that converts a servo’s rotation into linear motion.

The actuator uses five different parts, a few screws, and a common RC servo. The video shows the actuator pushing and pulling a 200g load with a 6V supply. There’s some room for adjustment, so different servos should work.

Continue reading “3D Printed RC Servo To Linear Actuator Conversion”

Madeline Gannon The Robot Tamer!

Let’s be honest. Who doesn’t want an industrial six-axis robot arm in their garage to do their bidding? Introducing [Madeline Gannon], the Robot Tamer!

The only tricky part is… if you received an industrial six-axis robot arm, would you be able to control it to do your bidding (easily)? Having taken robotics courses myself in college, and worked with ABB robots like this one, I can tell you, it’s not exactly plug-and-play. Yeah, there’s the teach pendant and you can pretty quickly teach the robot to do a repetitive task well, but unless you’re setting up your own mini manufacturing line — what’s the point? You’re going to want to inject some CNC code or something and have it carve you a sculpture! Or pour you a mixed drink I guess…

Maybe [Madeline] has the answer. Working as an artist in residence at Pier 9, she’s created wearable markers and a motion capture system that allows a giant ABB robot to see, and respond to your movements in a shared space.

Continue reading “Madeline Gannon The Robot Tamer!”

MIT Robots Fight With Lightsabers

Students of the MIT Robotics Lab decided to have some fun this holiday season with the big release of Star Wars. They built a lightsaber wielding delta-bot, and some very interesting hip-mounted lightsaber robot arms, akin to General Grievous.

First up in the video though is their Jedi Training robot, which is a variation of the delta-bot robot we’re all familiar with thanks to 3D printers. With a lightsaber mounted on top, it’s not too fast, but has a large range of motion to allow you to practice your lightsaber form. They call it the Triple Scissor Extender — and as you can imagine, it was built for something completely different. You can check out the designer’s personal blog here, though he doesn’t have any info on this particular project — yet.

Second is a robot they designed for a project called Supernumerary Robotic Limbs (SRL), which is literally designed to give you extra robotic arms — it was the next logical step to give them lightsabers…

Continue reading “MIT Robots Fight With Lightsabers”