Lightsaber Uses Pogo Pins to Make Assembly a Breeze

There was an endless supply of fantastic projects at Supercon this year, but one whose fit and finish really stood out was [Scott]’s lightsaber. If you were walking around and saw someone with a very bright RGB device with a chromed-out handle hanging off their belt it was probably this, though it may have been hard to look at directly. On the outside, the saber looks like a well-polished cosplay prop, and it is! But when Scott quickly broke down the device into component pieces it was apparent that extra care had been put into the assembly of the electronics.

Like any good lightsaber replica the blade is lit, and wow is it bright. The construction is fairly simple, it’s a triplet of WS2812B LED strips back to back on a triangular core, mounted inside a translucent polycarbonate tube with a diffuser. Not especially unusual. But the blade can be popped off the hilt at a moments notice for easy transport and storage, so the strips can’t be soldered in. Connectors would have worked, but who wants flying wires when they’re disconnecting their lightsaber blade. The answer? Pogo pins! Scott runs the power, ground, and data lines out of the strips and into a small board with slip ring-style plated rings. On the hilt, there is a matching array of pogo pins to pass along power and data. The data lines from all the strips are tied together minimizing the number of connections to make, and the outer two power rings have more than one pin for better current-carrying capacity. A handy side effect is that there is nowhere on the blade where there aren’t LEDs; the strips go down to the very end of the blade where it meets the main board inside the hilt.

The hilt is filled with an assembly of 18650’s and a Teensy mounted with a custom shield, all fit inside a printed midframe. The whole build is all about robust design that’s easy to assemble. The main board is book-ended by perpendicular PCBs mounted to the ends, one at the top to connect to the blade and one at the bottom to connect to a speaker. Towards the bottom there is space for an optional Bluetooth radio to allow remote RGB control.

Scott is selling this as a product but also provides detailed instructions and parts lists for each component. Assembly instructions for the blade are here. The hilt is here. And pogo adapters are on OSH Park here. An overview of the firmware with links to GitHub is here. Check out a walkthrough of the handle assembly and blade attachment after the break!

Continue reading “Lightsaber Uses Pogo Pins to Make Assembly a Breeze”

Add Some Edge To Your Blades With Blown-Arc Plasma

If you polled science fiction fans on what piece of technology portrayed by the movies that they most desire, chances are pretty good that the lightsabers from the Star Wars franchise would be near the top of the list. There’s just something about having that much power in the palm of your hand and still needing to be up close and personal to fight with it. Plus being able to melt holes in bulkheads is pretty keen, as are the cool sounds.

Sadly, the day we can shape and contain plasma in a blade-shaped field is probably pretty far off, but that didn’t stop [Alan Pan] from trying the next best thing: a handheld plasma-projecting blade. He starts with a basic Jacob’s ladder. We’ve seen many of these before, but the basic idea is to ionize the air between two parallel, vertical conductors; the hot plasma heats the air causing it to rise until it reaches the top and snuffs itself out, starting the process over again at the bottom. His twist is to force the plasma into a sheet between the electrodes with air from a leaf blower, forming a blown-arc plasma. That’s pretty cool looking by itself, but he also stretched the electrodes along razor-sharp wood planer blades, for extra danger. We have to admit that the thing looks pretty intimidating, even if the plasma doesn’t really pack bulkhead-melting thermal power. Check out the results in the video below.

We’d love to see [Alan] make good on his promise to make the whole thing self-contained with an electric ducted fan or mini jet engine. Even as it is, it’s still pretty neat. It’s not really his first lightsaber rodeo, but at least this one doesn’t need butane.

Continue reading “Add Some Edge To Your Blades With Blown-Arc Plasma”

A Nicely Crafted POV Lightsaber

We need to have a talk. As tough a pill as it is to swallow, we have to face that fact that some of the technology promised to us by Hollywood writers and prop makers just isn’t going to come true. We’re never going to have a flux capacitor, actual hoverboards aren’t a real thing, and nobody is going to have sword fights with laser beams.

But just because we can’t have real versions of these devices doesn’t mean we can’t make our own prop versions with a few value-added features, like this cool persistence-of-vision lightsaber. [Luni], better known around these parts as [Bitluni] and for his eponymous YouTube channel where he performs wizardry like turning an ESP32 into a software-defined television station, shows he’s no slouch at more mechanical builds either. The hardware is standard POV fare, with a gyro to sense the position of the lightsaber hilt and an ESP32 to run the long Neopixel strip in the blade. There’s also a LiPo pack and a biggish DC-DC converter; the latter contributes mightily to the look of the prop, with its large heatsinks that stick out from the end of the aluminum tubing hilt. There’s also a small speaker and amp for the requisite sound effects on startup and shutdown, and the position-sensitive thrumming is a nice touch too. Check out the POV action in the video below.

What’s that you say? You recall seeing a real lightsaber here before? Well, sort of, but that’s pushing things a bit. Or perhaps you’ve got this more destructive version in mind.

Continue reading “A Nicely Crafted POV Lightsaber”

A Lightsaber, With Rave Mode

How often after being exposed to Star Wars did you dream of having your own working lightsaber? These days — well, we don’t quite have the technology to build crystal-based weapons, but tailor-made lightsabers like redditor [interweber]’s are very much real.

Piggybacking off the Korbanth Graflex 2.0 kit — a sort of bare-bones lightsaber ready to personalize — [interweber] is using a Teensy 3.5 to handle things under the hilt. Instead of taking the easy route and cramming everything into said handle, a 3D printed a cradle for the electronics and speaker keep things secure. The blade is made up of two meters of APA102 LEDs.

As well as all the sound effects appropriate to ‘an elegant weapon for a more civilized age’, a cluster of buttons handle the various functions; , playing and cycling through music(more on that in a second), changing the color of the lightsaber — Jedi today, Sith tomorrow — enabling a flickering effect that mimics Kylo Ren’s lightsaber, color cycling, and a…. rave mode?

Continue reading “A Lightsaber, With Rave Mode”

A Violin Bow Lightsaber

[Bithead942]’s ten-year-old niece is a huge Star Wars fan, and also a violinist. Which of course has led her to learn to play some of the music from the film franchise, and then to ask her uncle to make her violin bow light up like a lightsaber.

His solution might seem fairly straightforward at first sight, simply attach a strip of DotStar addressable LEDs to a bow and drive them from an Arduino Pro Mini to gain the required animation of a saber power-up. But of course, there’s another dimension to this project. Not only does the bow have to do its lightsaber trick, it also has to be a playable bow. The electronics must not impede the musician by being too heavy or intrusive, but the result must have enough power in reserve to keep the lights burning for the duration of a performance.

After experimentation with AAA cells and CR2032s the power requirement was satisfied by a tiny Li-po cell attached to the top of the end of the bow with industrial Velcro, and the LED strip was glued and further secured using tiny rubber bands of the type used by orthodontists.

A short demonstration of the bow’s lightsaber action is shown below the break, we’re sure it’ll impress the young violinist’s audience.

Continue reading “A Violin Bow Lightsaber”

Building The Brightest Light Sabre In The World

If you are looking for a Star Wars light sabre, sometimes your choices can be a little disappointing. “Replica” sabres from toy and novelty vendors may superficially look the part, but with their tinny speakers and lacklustre show of LEDs they often have less of the Force about them and more of the Farce.

[Jeremy Lee] offers a solution; he’s built what he claims to be the brightest light sabre in the world. That’s a bold assertion, and one which we think might even throw down a gauntlet to other sabre builders and spark an arms race among Jedi wannabes.

The super-bright sabre uses a 144 LED double-sided strip of Neopixels in a polycarbonate tube, with a DC to DC converter powered by a 1000mAH LiPo battery. Sound effects come from a SparkFun Pro Micro powering a 2W speaker through a small audio amplifier. The handle meanwhile is constructed from PVC pipe fittings.

His first attempt at the sabre had the LEDs at full power, and promptly melted his tube. Thus the final version runs at 40% of its maximum rating, with a “burst” mode for those moments at which combat demands it.

His write-up is a series of posts, with plenty of video at all points. It might seem odd to show you the shortest of them here at only a few seconds long, but since the unique selling point is its brightness we think the best way to show that is at night.

Continue reading “Building The Brightest Light Sabre In The World”

Hackaday Links: December 27th, 2015

PCBs can be art – we’ve known this for a while, but we’re still constantly impressed with what people can do with layers of copper, fiberglass, soldermask, and silkscreen. [Sandy Noble] is taking this idea one step further. He took C64, Spectrum, and Sinclair PCBs and turned them into art. The results are incredible. These PCBs were reverse engineered, traced, and eventually turned into massive screen prints. They look awesome, and they’re available on Etsy.

$100k to bring down drones. That’s the tagline of the MITRE Challenge, although it’s really being sold as, “safe interdiction of small UAS that pose a safety or security threat in urban areas”. You can buy a slingshot for $20…

[styropyro] mas made a name for himself on Youtube for playing with very dangerous lasers and not burning his parent’s house down. Star Wars is out, and that means it’s time to build a handheld 7W laser. It’s powered by two 18650 cells, and is responsible for more than a few scorch marks on the walls of [styropyro]’s garage.

Everybody is trying to figure out how to put Ethernet and a USB hub on the Pi Zero. This means a lot of people will be launching crowdfunding campaigns for Pi Zero add-on boards that add Ethernet and USB. The first one we’ve seen is the Cube Infinity. Here’s the thing, though: they’re using through-hole parts for their board, which means this won’t connect directly to the D+ and D- USB signals on the Pi Zero. They do have a power/battery board that may be a little more useful, but I can’t figure out how they’re doing the USB.

[Keith O] found a fascinating video on YouTube and sent it into the tips line. It’s a machine that uses a water jet on pastries. These cakes start out frozen, and come out with puzzle piece and hexagon-shaped slices. Even the solution for moving cakes around is ingenious; it uses a circular platform that rotates and translates by two toothed belts. Who would have thought the latest advancements in cutting cakes and pies would be so fascinating?

It’s time to start a tradition. In the last links post of last year, we took a look at the number of views from North Korea in 2014. Fifty-four views, and we deeply appreciate all our readers in Best Korea. This year? For 2015, we’ve logged a total of thirty-six views from the Democratic People’s Republic of Korea. That’s a precipitous drop that deserves an investigation. Pyongyang meetup anyone?