Hackaday Links: March 11, 2018

Guess what’ll be wrapping up in just two weeks? The Midwest RepRap Festival, the largest con for open source 3D printing in the world. MRRF is going down in Goshen, Indiana on March 23rd through March 25th. Tickets are free! If you’re looking for a hotel, I can speak from experience that the Best Western is good and close to the con, and I haven’t heard anything bad about the Holiday Inn Express.

Want to go to a convention with even weirder people? Somehow or another, a press release for Contact In The Desert, the largest UFO conference in the world, ended up in my inbox. It’s on the first weekend in June near Cochilla. Why is this significant? Because the greatest people-watching experience you’ll ever see, AlienCon 2018, is happening in Pasadena just two weeks later. The guy with the hair from Ancient Aliens will be at both events. Why are they having a UFO conference where military planes fly all the time? Wouldn’t it be better to rule out false positives?

The entirety of Silicon Valley tech culture is based upon the principle of flouting laws and regulations. We have reached a new high water mark. Swarm Technologies, a ‘stealth startup’ working on ‘Internet of Things’ satellites recently sent up four 0.25U cubesats on an ISRO flight. The satellites were deployed and are currently in orbit. This is somewhat remarkable, because the FCC, the government body responsible for regulating commercial satellites, dismissed Swarm’s application for launch on safety grounds. As reported by IEEE Spectrum, this is the first ever unauthorized launch of commercial satellites.

The TRS-80 Model 100 was one of the first, best examples of a ‘notebook’ computer. It had a QWERTY keyboard, an LCD, and ran off a few AA batteries for 20 hours. It’s the perfect platform for a Raspberry Pi casemod, and now someone has finally done it. [thecodeman] stuffed a Pi into a broken model M100 and replaced the old LCD with a 7.8″ 400×1280 pixel display. The display is the interesting part here, and it comes from EarthLCD, part number earthlcd-7-4001280.

The Flite Test crew is famous for their foam board RC airplanes, but they have historically had some significantly more interesting builds. Can you fly a cinder block? Yep. Can you fly a microwave and have it pop popcorn? Yep. Their latest crazy project is a flying Little Tikes Cozy Coupe, the ubiquitous red and yellow toy car meant to fit a toddler. The wings are made out of cardboard, the motors — both of them — generate thirty pounds of thrust each, and you can weld with the batteries. Does it fly? Yes, until the wings collapsed and the Cozy Coupe plummeted to the ground. Watch the video, it’s a great demonstration of designing a plane to rotate off the ground.

3D Printing The Final Frontier

While down here there’s room for debate about the suitability of 3D printing for anything more serious than rapid prototyping, few would say the same once you’ve slipped the surly bonds of Earth. With 3D printing, astronauts would have the ability to produce objects and tools on-demand from a supply of inert raw building materials. Instead of trying to pack every conceivable spare part for a mission to Mars, replacements (assuming a little forward thinking on the part of the spacecraft designers) can be made to order out of the stock of raw plastic or metal kept on-board. The implications of such technology for deep space travel or off-world settlement simply cannot be overstated.

In the more immediate future, 3D printing can be used to rapidly develop and deploy unmanned spacecraft. Tiny satellites (referred to as CubeSats) could be printed, assembled, and deployed by astronauts already in orbit. Innovations such as these could allow science missions to be planned and executed in months instead of years, and at a vastly reduced cost.

Continue reading “3D Printing The Final Frontier”

AMSAT MPPT Goes to Infinity and Beyond

AMSAT, the Radio Amateur Satellite Corporation, joined forces with students from Rochester Institute of Technology to create a MPPT attached to a Fox-1B CubeSat. It successfully launched into orbit on November 18th strapped to the back of a Delta II rocket. This analog MPPT, or Maximum Power Point Tracker, is used for optimizing the draw of a power cell in correspondence to the output of solar panels on the 10cm x 10cm satellite. In a nutshell, this works by matching the voltage of the two together. If you haven’t gotten a chance to play around with one of these first hand, Hackaday’s own [Elliot Williams] wrote up a thorough explanation of the glorious MPPT’s efficiency.

This little guy is currently hurtling along in an orbit every 90 minutes. During each of these elliptical trajectories, the satellite undergoes brutal heating and cooling cycles. The team calculated that this package will undergo a total of 29,200 orbits around Earth during its 5 year mission. This means that there are 29,200 tests for it to crack — quite literally — under pressure. To add another level of difficulty, the undergrad team didn’t have funding for automated board assembly. This meant that they had to hand solder over 400 micro components onto this board, adding additional human error to be accounted for in the likelihood of a failure. But so far, this puppy is going strong. This truly shows the struggles that can be overcome with a little elbow grease, hard work, and plain ‘ole good engineering.

Continue reading “AMSAT MPPT Goes to Infinity and Beyond”

Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space

While [Elon Musk] and [Jeff Bezos] are working on getting us to Mars and the Moon, [Ronald Jaramillo] is working on building structures once we get there. To that end, he’s been developing the ZBeam, two rolls of links that zip together like a zipper to form a rigid beam.

ZBeam making, regolith munching machine
ZBeam making, regolith munching machine

Initially stored in a compact cube targeted to eventually fit in a CubeSat’s dimension’s, 100 mm x 100 mm x 100 mm, the beam emerges from within the cube and will be able to connect with other cubes to form rigid structures. His hope is that they can one day be made automatically from lunar or Martian regolith (loose surface dirt) munching machines. His current one has 160 mm sides and uses a servo hacked to turn continuously.

In his hackaday.io project logs he shows the trial and error he’s gone through to get to his current stage: experimenting with the links to form a more rigid beam, fine tuning the unreeling of the rolls of links to prevent jamming, adding a safety-ratchet-gear to the gearing to overcome speed issues, and more. He currently 3D prints as many connected sets of links as he can on his Prusa i3, and then manually connects sets together to make a longer chain, but he has his eye on the Printrbot Printrbelt for printing arbitrarily long chains in one piece.

You can see one pretty impressive iteration of the ZBeam in action in the video below and more is on his project page. In fact, the judges for the 2017 Hackaday Prize liked [Ronald]’s projects so much that they designated it as a Best Product finalist.

Continue reading “Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space”

Hackaday Links: July 23, 2017

Hey, you know what’s happening right now? We’re wrapping up the third round of The Hackaday Prize. This challenge, Wheels, Wings, and Walkers, is dedicated to things that move. If it’s a robot, it qualifies, if it’s a plane, it qualifies, if it passes butter, it qualifies. There’s only a short time for you to get your entry in. Do it now. Superliminal advertising.

Speaking of the Hackaday Prize, this project would be a front-runner if only [Peter] would enter it in the competition. It’s one thing to have a cult; I have a cult and a petition to ‘stop’ me.

We were completely unaware of this project, but a few weeks ago, a cubesat was launched from Baikonur. This cubesat contains a gigantic mylar reflector, and once it’s deployed it will be the second brightest object in the night sky after the moon. I don’t know why we haven’t seen this in the press, but if you have any pictures of sightings, drop those in the comments.

In a mere two years, we’ll be looking at the 50th anniversary of the Apollo 11 landing. The mission control center at Johnson Space Center — where these landings were commanded and controlled — is still around, and it’s not in the best shape. There’s a Kickstarter to restore the Apollo Mission Control Center to its former glory. For the consoles, this means restoring them to Apollo 15 operational configuration.

We’ve seen 3D printed remote control airplanes, and at this point, there’s nothing really exceptional about printing a wing. This user on imgur is going a different direction with 3D printed fiberglass molds. Basically, it’s a fuselage for a Mustang that is printed, glued together, with the inside sanded and coated in wax. Two layers (3 oz and 6 oz) fiberglass is laid down with West Systems epoxy. After a few days, the mold is cracked open and a fuselage appears. This looks great, and further refinements of the process can include vapor smoothing of the inside of the mold, a few tabs to make sure the mold halves don’t break when the part is released, and larger parts in general.

The Darknet’s Casefile will take you to the limit of your existing knowledge. Join them, to go on a quest to improve your technical abilities.

This week is Def Con. That means two things. First, we’re on a hardware hunt. If you’ve been dedicating the last few months to #badgelife or other artisanal electronics, we want to hear about it. Second, [Joe Kim] made a graphic of the Tindie dog wearing a Hackaday hoodie and it’s adorable. There are a limited number of stickers of our hacker dog.

Gigabyte launched a single board computer with an Intel Apollo Lake CPU, discrete memory and storage, and a mini PCIe slot. Of course, this is being incorrectly marketed as a ‘Raspberry Pi competitor’, but whatever.

RainCube Spreads Its Umbrella

There are times when a mechanism comes to your attention that you have to watch time and time again, to study its intricacies and marvel at the skill of its designer. Sometimes it can be a complex mechanism such as a musical automaton or a mechanical loom, but other times it can be a device whose apparent simplicity hides its underlying cleverness. Such a moment came for us today, and it’s one we have to share with you.

RainCube is a satellite, as its name suggests in the CubeSat form factor and carrying radar instruments to study Earthly precipitation. One of the demands of its radar system is a parabolic dish antenna, and even at its 37.5 GHz  that antenna needs to be significantly larger than its 6U CubeSat chassis.

The unfolding parabola in action.
The unfolding parabola in action.

It is the JPL engineers’ solution to this problem that is the beautiful mechanism we want to show you. The parabola is folded within itself and tightly furled round the feedhorn within the body of the satellite. As the feedhorn emerges, first the inner sections unfurl and then the outer edge of the parabola springs out to form the dish antenna shape. Simultaneously a mechanism of simplicity, cleverness, and beauty, one we’d be very proud of if it were our creation.

There is nothing new in collapsible parabolas used in spacecraft antennas, petal and umbrella-like designs have been a feature of some of the most famous craft. But the way that this one has been fitted into such a small space (and so elegantly) makes it special, we hope you’ll agree.

[via space.com]

HFSat and The All-HF Amateur Radio Satellite Transponder

One facet of the diverse pursuit that is amateur radio involves the use of amateur radio satellites. These have a long history stretching back to the years shortly after the first space launches, and have been launched as “piggy-back” craft using spare capacity on government and commercial launches.

Though a diverse range of payloads have been carried by these satellites over the years, the majority of amateur radio satellites have featured transponders working in the VHF and UHF spectrum. Most often their links have used the 2m (144 MHz) and 70cm (430MHz) bands. A few have had downlinks in the 10m (28MHz) band, but this has been as far as they have ventured into the HF spectrum.

A new cubesat designed and built by trainees at the US Naval Academy promises to change all that, because it will feature an all-HF transponder with a 15m (21MHz) uplink and a 10m downlink. To that end it will carry a full size 10m wire dipole antenna. The 30KHz wide transponder is an inverting design intended to cancel out the effects of Doppler shift. In their write-up they provide a fascinating description of many aspects of cubesat design, one which should be of significant interest beyond the world of amateur radio.

If the subject of amateur radio in space interests you, have a look at our series on the matter, first covering the OSCAR satellites, and then our recent feature on its use in manned missions.

[via Southgate ARC]