Industrial Robot Repurposed To Make S’Mores

It’s summer time in the Northern Hemisphere, and that means campfires for cooking hot dogs, keeping the mosquitoes away, and of course, making s’mores. For our far-flung friends, that’s a fire roasted marshmallow and a square of chocolate smashed between two graham crackers. So called because when you’re done, you’ll want s’more. It’s an easy enough recipe that any child can tell you how to make it. But what if you’re not a child? What if you don’t even have hands, because you’re an industrial robot? This is the challenge that [Excessive Overkill] has taken on in the video below the break.

Starting with a Fanuc S-420 i W industrial robot built in 1997, [Excessive Overkill] painstakingly taught his own personal robot how to make S’Mores. Hacking the microwave with pneumatic cylinders to get the door open was a nice touch, and so are the vacuum grippers at the business end of the S’More-bot.

We know, we said you were supposed to make them on a campfire — but who wants to risk cooking their vintage robotic arm just to melt some chocolate?

There’s a lot of story behind this hack, and [Excessive Overkill] explains how they acquired, transported, and three phase powered an out of date industrial robot in another of their videos. Of course, this is Hackaday so it’s a subject that’s come up before in the reverse engineering of an industrial robot that we covered some time back.

Continue reading “Industrial Robot Repurposed To Make S’Mores”

Industrial Robots, Hacking And Sabotage

Everything is online these days creating the perfect storm for cyber shenanigans. Sadly, even industrial robotic equipment is easily compromised because of our ever increasingly connected world. A new report by Trend Micro shows a set of attacks on robot arms and other industrial automation hardware.

This may not seem like a big deal but image a scenario where an attacker intentionally builds invisible defects into thousands of cars without the manufacturer even knowing. Just about everything in a car these days is built using robotic arms. The Chassis could be built too weak, the engine could be built with weaknesses that will fail far before the expected lifespan. Even your brake disks could have manufacturing defects introduced by a computer hacker causing them to shatter under heavy braking. The Forward-looking Threat Research (FTR) team decided to check the feasibility of such attacks and what they found was shocking. Tests were performed in a laboratory with a real in work robot. They managed to come up with five different attack methods.


Attack 1: Altering the Controller’s Parameters
The attacker alters the control system so the robot moves unexpectedly or inaccurately, at the attacker’s will.

  • Concrete Effects: Defective or modified products
  • Requirements Violated: Safety, Integrity, Accuracy

Attack 2: Tampering with Calibration Parameters
The attacker changes the calibration to make the robot move unexpectedly or inaccurately, at the attacker’s will.

  • Concrete Effects: Damage to the robot
  • Requirements Violated: Safety, Integrity, Accuracy

Why are these robots even connected? As automated factories become more complex it becomes a much larger task to maintain all of the systems. The industry is moving toward more connectivity to monitor the performance of all machines on the factory floor, tracking their service lifetime and alerting when preventive maintenance is necessary. This sounds great for its intended use, but as with all connected devices there are vulnerabilities introduced because of this connectivity. This becomes especially concerning when you consider the reality that often equipment that goes into service simply doesn’t get crucial security updates for any number of reasons (ignorance, constant use, etc.).

For the rest of the attack vectors and more detailed info you should refer to the report (PDF) which is quite an interesting read. The video below also shows insight into how these type of attacks might affect the manufacturing process.

Continue reading “Industrial Robots, Hacking And Sabotage”

Fidget Pyramid With Help From A 2500 Pound Robot

Depending on whom you ask, fidgeting is an unsightly habit or a necessity for free-form ideation. Fan of the latter hypothesis? Well, why aren’t you making yourself a fidget pyramid?

[lignum] sculpted his fidget toy out of a chunk of 2000 year old bog-oak using hand tools and a little precision help from a Kuka KR 150 industrial robot arm. A push button, a toggle switch, a ball-bearing, and a smooth side provide mindless distraction on this piece.

Two plates of 1.5mm aluminium — also cut using the robot arm — are used to attach the button and toggle to the tetrahedron, while the ball bearing is pushed onto a cylindrical protrusion left during the cutting process for the purpose. The build video makes it look easy.

Continue reading “Fidget Pyramid With Help From A 2500 Pound Robot”

3D Printed Bicycle From Stainless Steel!

You wouldn’t 3D print a car, would you? That’d simply be impractical. However, if you’re a team of students attending the Delft University of Technology (TU Delft) in the Netherlands, you might be inclined to 3D print a stainless steel bicycle instead.

The TU Delft team collaborated with MX3D, a company that uses an articulated industrial robot arm with a welder for an effector, welding and building the Arc Bicycle, glob by molten glob. Printed in chunks, this process allows the practical construction of larger objects that are able to withstand the stresses and forces of everyday use. Weighing around 20kg, you might not want to spend much time carrying it up to an apartment anytime soon, so stick to the cobblestone streets — the Arc Bicycle can take it.

Continue reading “3D Printed Bicycle From Stainless Steel!”

Madeline Gannon The Robot Tamer!

Let’s be honest. Who doesn’t want an industrial six-axis robot arm in their garage to do their bidding? Introducing [Madeline Gannon], the Robot Tamer!

The only tricky part is… if you received an industrial six-axis robot arm, would you be able to control it to do your bidding (easily)? Having taken robotics courses myself in college, and worked with ABB robots like this one, I can tell you, it’s not exactly plug-and-play. Yeah, there’s the teach pendant and you can pretty quickly teach the robot to do a repetitive task well, but unless you’re setting up your own mini manufacturing line — what’s the point? You’re going to want to inject some CNC code or something and have it carve you a sculpture! Or pour you a mixed drink I guess…

Maybe [Madeline] has the answer. Working as an artist in residence at Pier 9, she’s created wearable markers and a motion capture system that allows a giant ABB robot to see, and respond to your movements in a shared space.

Continue reading “Madeline Gannon The Robot Tamer!”

Open-Source Robotic Arm Now Within Reach

For anyone looking for a capable robotic arm for automation of an industrial process, education, or just a giant helping hand for a really big soldering project, most options available can easily break the bank. [Mads Hobye] and the rest of the folks at FabLab RUC have tackled this problem, and have come up with a very capable, inexpensive, and open-source industrial arm robot that can easily be made by anyone.

The robot itself is Arduino-based and has the option to attach any end effector that might be needed for a wide range of processes. The schematics for all of the parts are available on the project site along with all of the Arduino source code. [Mads Hobye] notes that they made this robot during a three-day sprint, so it shouldn’t take very long to get your own up and running. There’s even a virtual robot that can be downloaded and used with the regular robot code, which can be used for testing or for simply getting the feel for the robot without having to build it.

This is a great project, and since it’s open source it will be great for students, small businesses, and hobbyists alike. The option to attach any end effector is also a perk, and we might suggest trying out [Yale]’s tendon-driven robotic hand. Check after the break for a video of this awesome robot in action.

Continue reading “Open-Source Robotic Arm Now Within Reach”

Hackaday Links Column Banner

Hackaday Links: January 11, 2015

Listening tests reveal significant sound quality differences between various digital music storage technologies. Finally the audiophile press is tackling the important questions. This listening test looks at the difference between two four-bay NAS boxes, with one making the piano on Scherzo and Trio from Penguin Café Orchestra’s Union Cafe sound more Steinway-like, while another NAS makes it sound more like a Bosendörfer. Yes, your choice of digital storage medium can change the timbre of a piano. Another gem: “Additionally, the two units also had different processor architectures, which might also affect perceived audible differences.” There must be a corollary to Poe’s Law when it comes to audiophiles…

[10p6] has begun a project that can play every old Atari cartridge. Right now it’s just a few bits of plastic that fits every non-Jaguar Atari cartridge, but it’s a start.

The Android IMSI-Catcher Detector. You’ve heard about Stingrays, devices used by law enforcement that are basically fake cell towers. These Stingrays downgrade or disable the encryption present in all cellphones, allowing anyone, with or without a warrant, to listen in on any cell phone conversation. Now there’s an effort to detect these Stingrays. It’s open source, and they’re looking for volunteers.

[Rob] sent in something that’s the perfect application of projection mapping. It’s called Face Hacking, and it’s pretty much just a motion capture systems, a few projectors, a whole lot of CG work, and just a tiny bit of dubstep. It look cool, but we’re wondering what the applications would be. Theatre or some sort of performance art is the best I can come up with.

A while ago, [4ndreas] saw a 3D printed industrial robot arm. He contacted the guy for the files, but nothing came of that. [4ndreas] did what anyone should do – made his own 3D printable industrial robot arm. The main motors are NEMA 17, and printing this will take a long time. Still, it looks really, really cool.