Salvaging Parts From Broken Roomba Robots

salvaging-parts-from-broken-roombas

The great thing about hacking on Roombas is that iRobot used quality parts to build them. [Jason] got his hands on a broken 5XX series Roomba and posted an article about how he reused the salvaged parts.

What you see above is one of the results of his work. This little bot takes commands from an IR television remote control. But he also used the setup to make a self-balancing bot. The two motors from the Roomba have magnetic rotary encoders with 8-bit resolution. Pair this with a well-tuned PID algorithm and you’re in business. The video below shows him testing a motor with his PID code.

You don’t get very much info on the guts of the donor robot. If that’s what you’re looking for you need to look at [Dino’s] Roomba 4000 teardown.

Continue reading “Salvaging Parts From Broken Roomba Robots”

Automata And Wooden Gears

mechanism

While most animated machines we deal with every day – everything from clocks to cars to computers – are made of metal, there is an art to creating automated objects out of wood. [Dug North] is a creator of such inventions, making automata out of wooden gears, cogs, and cams.

[Dug]’s inventions are simple compared to turbine engines, but they still retain an artistry all their own. With just simple woodworking tools, he’s able to creating moving vignettes of everyday scenes, everything from a dog barking at a bird, to Santa Claus gracefully soaring over a house on Christmas Eve.

Below, you’ll find a video of [Dug]’s creation, ‘An Unwelcome Dinner Guest’ – an automated dog barking at a wooden bird. There’s also a video of him being interviewed by the awesome people at Tested last year at the World Maker Faire.

Continue reading “Automata And Wooden Gears”

Build A Light Following Bristlebot As A Way To Teach Science

light-following-bristlebot

[Ben Finio] designed this project as a way to get kids interested in learning about science and engineering. Is it bad that we just want to build one of our own? It’s a light following bristlebot which in itself is quite simple to build and understand. We think the platform has a lot of potential for leading to other things, like learning about microcontrollers and wireless modules to give it wireless control.

Right now it’s basically two bristlebots combined into one package. The screen capture seen above makes it hard to pick out the two toothbrush heads on either side of a battery pack. The chassis of the build is a blue mini-breadboard. The circuit that makes it follow light is the definition of simple. [Ben] uses two MOSFETs to control two vibration motors mounted on the rear corners of the chassis. The gate of each MOSFET is driven by a voltage divider which includes a photoresistor. When light on one is brighter than the other it causes the bot to turn towards to the brighter sensor. When viewing the project log above make sure to click on the tabs to see all of the available info.

This directional control seems quite good. We’ve also seen other versions which shift the weight of the bot to change direction.

Continue reading “Build A Light Following Bristlebot As A Way To Teach Science”

Transformer Built From MIT Admissions Mailing Tube

mit-admissions-tube-robotIt’s not quite on the scale of [Michael Bay], but that’s probably a good thing. We do think that this robot built from a mailing tube by [Will Jack] would be right at home in a Transformers movie.

The bot starts out looking like a normal cardboard mailing tube. But the seam at the middle splits to reveal the electronics inside. An Arduino Uno drives the device, monitoring that infrared rangefinder which is facing forward. Each half of the tube acts as a wheel, pushing against the at-rest mass of the internals to create motion. It can even pull off a tank-like pivot to turn in place by spinning he halves in opposite directions.

We were intrigued to hear that the admissions department at the Massachusetts Institute of Technology sent a single page acceptance letter in these silver tubes to those students accepted into the class of 2017. The letter invites the incoming class to hack the tube and send in their results. We’re going to have to dig through the submissions and see if there are any other noteworthy projects.

Continue reading “Transformer Built From MIT Admissions Mailing Tube”

Best Robot Demos From ICRA 2013

best-robots-from-2013-ICRA

The 2013 IEEE International Conference of Robotics and Automation was held early in May. Here’s a video montage of several robots shown off at the event. Looks like it would have been a blast to attend, but at least you can draw some inspiration from such a wide range of examples.

We grabbed a half-dozen screenshots that caught our eye. Moving from the top left in clockwise fashion we have a segmented worm bot that uses rollers for locomotion. There’s an interesting game of catch going on in the lobby with this sphere-footed self balancer. Who would have thought about using wire beaters as wheels? Probably the team that developed the tripod in the upper right. Just below there’s one of the many flying entries, a robot with what looks like a pair of propellers at its center. The rover in the middle is showing off the 3D topography map it creates to find its way. And finally, someone set up a pool of water for this snake to swim around in.

Continue reading “Best Robot Demos From ICRA 2013”

Building A Strandbeest

flexing-jansen-mechanism

[Jeremy] may have given up on his big hexapod project, but that doesn’t mean he’s out of the world of legged robots just yet. He’s embarked on another project, much more elegant and beautiful than a simple hexapod. This time, he’s building a Strandbeest, the same machine designed by walking machine extraordinaire [Theo Jansen].

Coming up with the correct lengths and joints of a Strandbeest leg linkage isn’t something you can just pull out of your head, so after [Jeremy] found the inspiration for his new project he dug into the related literature on Strandbeest legs. He found the work of [Dominique Studer] and set to work making his own mechanical legs.

Right now, [Jeremy] has a prototype of the Strandbeest leg linkage made out of wood. It still needs a little bit of work, but soon enough there will be a PVC pipe Mountainbeest trolling the backwoods near [Jeremy]’s house.

Continue reading “Building A Strandbeest”

Omniwheel Robot Build Uses A Bit Of Everything

Machinist, electronics engineer, programmer, and factory worker are all skills you can wield if you take on a project like building this omniwheel robot (translated).

The omniwheels work in this tripod orientation because they include rollers which turn perpendicular to the wheel’s axis. This avoids the differential issue cause by fixed-position wheels. When the three motors are driven correctly, as shown in the video below, this design makes for the most maneuverable of wheeled robots.

An aluminum plate serves as the chassis. [Malte] milled the plate, cutting out slots for the motor with threaded holes to receive the mounting screws. A few stand-offs hold the hunk of protoboard which makes up the electronic side of the build. The large DIP chip is an ATmega168. It drives the motors via the trio of red stepper motor driver boards which he picked up on eBay.

So far the vehicle is tethered, using a knock-off of a SixAxis style controller. But as we said before, driving the motors correctly is the hard part and he’s definitely solved that problem.

Continue reading “Omniwheel Robot Build Uses A Bit Of Everything”