Modular Rover Platform Rolls On 3D Printed Flexible Tank Tracks

Master of 3D printed robots, [James Bruton], plans to do some autonomous rover projects in the future, but first, he needed a modular rover platform. Everything is cooler with tank tracks, so he built a rover with flexible interlocking track sections.

The track sections are printed with flexible Ninjaflex filament. Each section has a tab designed to slot through two neighboring pieces. The ends of the tabs stick through on the inside of the track fit into slots on the drive wheel like gear teeth. This prevents the track from slipping under load. The Ninjaflex is almost too flexible, allowing the tracks to stretch and almost climb off the wheels, so [James] plans to experiment with some other materials in the future. The chassis consists of two 2020 T-slot extrusions, which allows convenient mounting of the wheel bogies and other components.

The interlocking track pieces

For initial driving tests [James] fitted two completely overpowered 1500 W brushless motors that he had on hand, which he plans to replace with smaller geared DC motors at a later stage.

A standard RC system is used for control, but it does not offer a simple way to control a skid steer vehicle. To solve this, [James] added an Arduino between the RC receiver and the motor ESC. It converts the PWM throttle and turn signal from the transmitter, and combines is into differential PWM outputs for the two ESCs.

Continue reading “Modular Rover Platform Rolls On 3D Printed Flexible Tank Tracks”

Educational Robot Teaches With Magnets And Servos

Teaching kids about robotics gives them valuable skills for their futures, and is generally pretty darn fun for all involved, too. However, teaching children often involves taking a bit of a different tack to educating college students, and more of a hand-holding approach is often needed. This robot project is an attempt to do just that, using some classic time-honored techniques and a unique method of propulsion.

The Magnetic Motion Robot, or MMR, is very much a DIY project. Built out of hand-cut plywood and assembled by lacing together individual modules, it’s a low-cost entry into the world of educational robotics. Rather than wheels or motors, it instead uses electromagnets mounted on servo arms to get around. Switching the magnets on and off, and moving the servos in time, allows the robot to pull itself along a ferromagnetic surface.

The robot is outfitted with buzzers and LEDs, and using these features creates further programming challenges for students. Naturally, there’s also a line-following program, which is a great way to begin educating kids about autonomous robot operations. It’s all run from an Arduino Nano, programmed with Makeblock’s special building-block programming software.

While its DIY nature makes assembly a little more involved than the average off-the-shelf kit, it does present its own learning opportunities such as soldering and the integration of hardware. Educational robots will continue to be popular and fun long into the future; we’re a particular fan of sumobots ourselves. Video after the break.

Continue reading “Educational Robot Teaches With Magnets And Servos”

Light Tracking Robot Relies On LDRs

These days, when doing any sort of optical tracking, our mind immediately leaps towards sophisticated solutions. Raspberry Pis, high end cameras, and machine learning toolchains all come to mind. Of course, if your goals are simpler, you needn’t complicate the issue. PHIL is a light tracking robot who is perfectly happy to do it the old-school way.

PHIL consists of an Arduino Uno running a twin-servo motion platform, providing the sensor head with pan and tilt functionality. The sensor head itself consists of a 3D-printed cruciform-section shroud that mounts four light-dependent resistors in individual sections. The shroud helps block light to the off-angle sensors, giving a stronger difference between those exposed to the light directly and those on the dark side. This makes for a stronger difference signal, so when the Arduino reads the sensors, it’s much clearer which way PHIL should point the sensor head to follow the light.

The builder, [Sean O’Donovan], notes that PHIL was built with no practical purpose in mind, and is simply a cool project. We certainly agree, and it’s important to note that skills picked up on a project like this will invariably come in handy down the track. Such techniques can be highly useful for tracking the sun, for example. Video after the break.

Continue reading “Light Tracking Robot Relies On LDRs”

3D Printed SCARA Arm With 3D Printer Components

One of the side effects of the rise of 3D printers has been the increased availability and low cost of 3D printer components, which are use fill for range of applications. [How To Mechatronics] capitalized on this and built a SCARA robot arm using 3D-printed parts and common 3D-printer components.

The basic SCARA mechanism is a two-link arm, similar to a human arm. The end of the second joint can move through the XY-plane by rotating at the base and elbow of the mechanism. [How To Mechatronics] added Z-motion by moving the base of the first arm on four vertical linear rods with a lead screw. A combination of thrust bearings and ball bearings allow for smooth rotation of each of the joints, which are belt-driven with NEMA17 stepper motors. Each joint has a microswitch at a certain position in its rotation to give it a home position. The jaws of the gripper slide on two parallel linear rods, and are actuated with a servo. For controlling the motors, an Arduino Uno and CNC stepper shield was used.

The arm is operated from a computer with a GUI written in Processing, which sends instructions to the Arduino over serial. The GUI allows for both direct forward kinematic control of the joints, and inverse kinematic control,  which will automatically move the gripper to a specified coordinate. The GUI can also save positions, and then string them together to do complete tasks autonomously.

The base joint is a bit wobbly due to the weight of the rest of the arm, but this could be fixed by using a frame to support it at the top as well. We really like the fact that commonly available components were used, and the link in the first paragraph has detailed instructions and source files for building your own. If the remaining backlash can be solved, it could be a decent light duty CNC platform, especially with the small footprint and large travel area. Continue reading “3D Printed SCARA Arm With 3D Printer Components”

Getting Started With Geometric Algebra For Robotics, Computer Vision And More

[Hugo Hadfield] wrote to let us know about an intriguing series of talks that took place in February of this year at GAME2020, on the many applications of geometric algebra. The video playlist of these talks can be found here along with the first video embedded after the break. For those of us who did not take advanced algebra during university, one can picture geometric algebra (GA) as an extension of vector algebra, adding more algebraic structures.

The essential difference is that GA adds a new vectors product, called the ‘geometric product’. The Cliff’s Notes version is that this is very useful for doing for example transformations, like in 3D spaces. For a quick algebraic introduction to GA for those familiar with vector algebra, the associated biVector website is helpful, from where one can also find additional information, software and other resources on getting started with GA.

These talks will take the viewer through the use of GA with robot kinematics (co-presented by [Hugo]), in astrophysics and AI. Definitely worth a watch, even algebra isn’t one’s strongest points.

Continue reading “Getting Started With Geometric Algebra For Robotics, Computer Vision And More”

Robot Cat Takes Inspiration From Nature

Oftentimes, a project starts with a clean sheet of paper, and we set out wildly sketching towards the goal in our minds. However, it can pay to do your research first, as [Chen Liang] demonstrates with this great robotic cat build.

[Liang] began the project after being dissatisfied with existing robot animals they’d seen online. Rather than simply attempt to build a cat from memory, instead, [Liang] decided to first study a real cat to ensure the resulting robot would bear real resemblence to its biological inspiration. [Liang]’s focus was on the skeleton, as replicating the way the real skeleton worked would create a robot with more authentic movement.

Using 3D printed parts and many, many servos, we think [Liang] has done an admirable job at creating a basic robot cat platform. With an ESP32 running the show, the cat can be posed using a web interface to control the servo positions of its various joints. We look forward to future upgrades that enable fluid movement and other capabilities, particularly involving the onboard camera.

It’s not the first robot cat we’ve seen, and it’s likely it won’t be the last. If you’ve got one living in your own lab, drop us a note on the tipline. Video after the break.

Continue reading “Robot Cat Takes Inspiration From Nature”

Lego Ziplining Robot Climbs For Claps

The internet has given us plenty of cool robotics projects, but we don’t think we’ve seen one zipline before. At least not until now.

This cool little ziplining robot is courtesy of the folks over at [Tart Robotics]. As they described it, the robot moves using a 4-bar linkage mechanism with the motor’s torque “transferred to the arm mechanisms through a pair of bevel gears and a worm drive.” Even cooler, the robot is activated by clapping. The faster you clap, the faster the robot moves. That’s sure to wow your friends at your next virtual hacker meetup.

They had to do a bit of custom 3D printing work to get a few of the Lego components to connect with their non-Lego off-the-shelf bits, so that took a bit of time. Specifically, they had some cheap, non-branded DC motors that they used that did not naturally mate with the Lego Technic components used to create the rest of the robot’s body. Nothing a few custom 3D printing jobs couldn’t solve.

It always amazes us what cool contraptions you can put together with a few Lego blocks. What’s your favorite Lego project?

Continue reading “Lego Ziplining Robot Climbs For Claps”