37C3: You Think It’s Bad With Pluto? A History Of The Planets

Not every talk at the Chaos Communication Congress is about hacking computers. In this outstanding and educational talk, [Michael Büker] walks us through the history of our understanding of the planets.

The question “What is a planet?” is probably more about the astronomers doing the looking than the celestial bodies that they’re looking for. In the earliest days, the Sun and the Moon were counted in. They got kicked out soon, but then when we started being able to see asteroids, Ceres, Vesta, and Juno made the list. But by counting all the asteroids, the number got up above 1,200, and it got all too crazy.

Viewed in this longer context, the previously modern idea of having nine planets, which came about in the 1960s and lasted only until 2006, was a blip on the screen. And if you are still a Pluto-is-a-planet holdout, like we were, [Michael]’s argument that counting all the Trans-Neptunian Objects would lead to madness is pretty convincing. It sure would make it harder to build an orrery.

His conclusion is simple and straightforward and has the ring of truth: the solar system is full of bodies, and some are large, and some are small. Some are in regular orbits, and some are not. Which we call “planets” and which we don’t is really about our perception of them and trying to fit this multiplicity into simple classification schemas. What’s in a name, anyway?

Moving Iron-Coated Polymer Particles Uphill Using External Magnetic Field

Microscopy of PMMA ferromagnetic Janus particle as used in the study (Credit: Wilson-Whitford et al., 2023)
Microscopy of PMMA ferromagnetic Janus particle as used in the study (Credit: Wilson-Whitford et al., 2023)

Granular media such as sand have a range of interesting properties that make it extremely useful, but they still will obey gravity and make their way downhill. That is, until you coat such particles with a ferromagnetic material like iron, make them spin using an external magnetic field and watch them make their way against gravity. This recent study by researchers has an accompanying video (also embedded below) that is probably best watched first before reading the study by Samuel R. Wilson-Whitford and colleagues in Nature Communications.

In the supplemental material the experimental setup is shown (see top image), which is designed to make the individual iron-coated polymer particles rotate. The particles are called Janus particles because only one hemisphere is coated using physical vapor deposition, leaving the other as uncovered PMMA (polymethyl methacrylate).

While one might expect that the rotating magnetic field would just make these particles spin in place, instead the researchers observed them forming temporary chains of particles, which were able to gradually churn their way upwards. Not only did this motion look like the inverse of granular media flowing downhill, the researchers also made a staircase obstacle that the Janus particles managed to traverse. Although no immediate practical application is apparent, these so-called ‘microrollers’ display an interesting method of locomotion in what’d otherwise be rather passive granular media.

Continue reading “Moving Iron-Coated Polymer Particles Uphill Using External Magnetic Field”

Keeping Watch Over The Oceans With Data Buoys

When viewed from just the right position in space, you’d be hard-pressed to think that our home planet is anything but a water world. And in all the ways that count, you’d be right; there’s almost nothing that goes on on dry land that isn’t influenced by the oceans. No matter how far you are away from an ocean, what’s going on there really matters.

But how do we know what’s going on out there? The oceans are trackless voids, after all, and are deeply inhospitable to land mammals such as us. They also have a well-deserved reputation for eating anything that ventures into them at the wrong time and without the proper degree of seafarer’s luck, and they also tend to be places where the resources that run our modern technological society are in short supply.

Gathering data about the oceans is neither cheap nor easy, but it’s critically important to everything from predicting what the weather will be next week to understanding the big picture of what’s going on with the climate. And that requires a fleet of data buoys, outnumbering the largest of the world’s navies and operating around the clock, keeping track of wind, weather, and currents for us.

Continue reading “Keeping Watch Over The Oceans With Data Buoys”

An Insulin Injection That Lasts For Days: A New Hope For Diabetics

A major challenge for people who have a form of diabetes is the need to regulate the glucose levels in their body. Normally this is where the body’s insulin-producing cells would respond to glucose with a matching amount of insulin, but in absence of this response it is up to the patient to manually inject insulin. Yet recent research offers the hope that these daily injections might be replaced with weekly injections, using insulin-binding substances that provide a glucose-response rather like the natural one. One such approach was tested by Juan Zhang and colleagues, with the results detailed in Nature Biomedical Engineering.

In this study, the researchers injected a group of diabetic (type 1) mice and minipigs with the formulation, consisting out of gluconic acid-modified recombinant human insulin bound to a glucose-responsive phenylboronic acid-diol complex. The phenylboronic acid element binds more easily to glucose, which results in the insulin being released, with no significant hypoglycemia observed in this small non-human test group. A major advantage of this mechanism is that it is fully self-regulating through the amount of glucose present in the blood.

This study is similar to work by Sijie Xian and colleagues published in Advanced Materials (ChemRxiv preprint) where a similar complex of glucose-sensitive, bound insulin complex was studied, albeit in vitro. With non-human animal testing showing good results for this method, human trials may not be far off, which could mean the end to daily glucose and insulin management for millions in the US alone.

(Top image: Chemical structures of the insulin-DiPBA complex and its functioning. Credit: Sijie Xian et al., 2023)

Temperature Measurement By Wire

There’s an old joke about how to tell how tall a building is using a barometer. The funniest answer is to find the building owner and offer them a nice barometer in exchange for the information. We wonder if [DiodeGoneWild] has heard that one since his recent video details how to measure temperatures using an ohmmeter.

The idea is that wire changes its resistance based on temperature. So if you know the resistance of a lot of wire — maybe a coil — at room temperature and you can measure the resistance at temperature, it is entirely feasible to calculate the amount of temperature that would cause this rise in resistance.

Of course, there are many ways to measure resistance, too. It’s probably possible to measure parameters like operating current and estimate temperature for at least some circuits. The wire’s material also plays a part, and the online calculator lets you choose copper, aluminum, iron, or tungsten. You also need a lot of wire, a very accurate resistance measurement, or, preferably, both.

There are many ways to accurately measure resistance, of course. Then again, you can also get resistors specifically for the job.

Continue reading “Temperature Measurement By Wire”

China’s Nuclear-Powered Containership: A Fluke Or The Future Of Shipping?

Since China State Shipbuilding Corporation (CSSC) unveiled its KUN-24AP containership at the Marintec China Expo in Shanghai in early December of 2023, the internet has been abuzz about it. Not just because it’s the world’s largest container ship at a massive 24,000 TEU, but primarily because of the power source that will power this behemoth: a molten salt reactor of Chinese design that is said to use a thorium fuel cycle. Not only would this provide the immense amount of electrical power needed to propel the ship, it would eliminate harmful emissions and allow the ship to travel much faster than other containerships.

Meanwhile the Norwegian classification society, DNV, has already issued an approval-in-principle to CSSC Jiangnan Shipbuilding shipyard, which would be a clear sign that we may see the first of this kind of ship being launched. Although the shipping industry is currently struggling with falling demand and too many conventionally-powered ships that it had built when demand surged in 2020, this kind of new container ship might be just the game changer it needs to meet today’s economic reality.

That said, although a lot about the KUN-24AP is not public information, we can glean some information about the molten salt reactor design that will be used, along with how this fits into the whole picture of nuclear marine propulsion.

Continue reading “China’s Nuclear-Powered Containership: A Fluke Or The Future Of Shipping?”

Absorbing Traffic Noise With Bricks Using Helmholtz Resonators

One inevitable aspect of cities and urban life in general is that it is noisy, with traffic being one of the main sources of noise pollution. Finding a way to attenuate especially the low-frequency noise of road traffic was the subject of [Joe Krcma]’s Masters Thesis, the results of which he gave a talk on at the Portland Maker Meetup Club after graduating from University College London. The chosen solution in his thesis are Helmholtz resonators, which are a kind of acoustic spring. Using a carefully selected opening into the cavity, frequencies can be filtered out, and extinguished inside the cavity.

Basic functionality and formula used to determine the dimensions of a Helmholtz Resonator.
Basic functionality and formula used to determine the dimensions of a Helmholtz Resonator.

As examples of existing uses of Helmholtz resonators in London, he points at the Queen Elizabeth Hall music venue, as well as the newly opened Queen Elizabeth Line and Paddington Station. For indoor applications there are a number of commercial offerings, but could this be applied to outdoor ceramics as well, to render urban environments into something approaching an oasis of peace and quiet?

For the research, [Joe]’s group developed a number of Helmholtz resonator designs and manufacturing methods, with [Joe] focusing on clay fired versions. For manufacturing, 3D printing of the clay was attempted, which didn’t work out too well. This was followed by slip casting, which allowed for the casting of regular rectangular bricks.

But after issues with making casting hollow bricks work, as well as the cracking of the bricks during firing in the kiln, the work of another student in the group inspired [Joe] to try a different approach. The result was a very uniquely shaped ‘brick’ that, when assembled into a wall, forms three Helmholtz resonators: inside it, as well as two within the space with other bricks. During trials, the bricks showed similar sound-deadening performance as  foam and wood. He also made the shape available on Thingiverse, if you want to try printing or casting it yourself.

Continue reading “Absorbing Traffic Noise With Bricks Using Helmholtz Resonators”