Hackaday Prize Semifinalist: Artificial Muscles And Supercapacitors

For [Lloyd T Cannon III]’s entry to the Hackaday Prize, he’s doing nothing less than changing the way everything moves. For the last 100 years, internal combustion engines have powered planes, trains, and automobiles, and only recently have people started looking at batteries and electric motors. With his supercapacitors and artificial muscles, [Lloyd] is a few decades ahead of everyone else.

There are two parts to [Lloyd]’s project, the first being the energy storage device. He’s building a Lithium Sulfur Silicon hybrid battery. Li-S-Si batteries have the promise to deliver up to 2000 Watt hours per kilogram of battery. For comparison, even advanced Lithium batteries top out around 2-300 Wh/kg. That’s nearly an order of magnitude difference, and while it’s a far way off from fossil fuels, it would vastly increase the range of electric vehicles and make many more technologies possible.

The other part of [Lloyd]’s project is artificial muscles. Engines aren’t terribly efficient, and electric motors are only good if you want to spin things. For robotics, muscles are needed, and [Lloyd] is building them out of fishing line. These muscles contract because of the resistive heating of a carbon fiber filament embedded in the muscle. It’s been done before, but this is the first project we’ve seen that replicates the technique in a garage lab.

Both parts of [Lloyd]’s project are worthy of a Hackaday Prize entry alone, but putting them together as one project more than meets the goal: to build something that matters.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: A Full-Stack IoT Platform

There are millions of devices and sensors connected to the Internet, and the next decade will bring billions more. How will anyone keep track of all these sensors? With analog.io, a platform for IoT devices, and [Luke]’s entry for The Hackaday Prize.

The problem of aggregating data from an Internet of things has been tackled before. Last year, Sparkfun released data.sparkfun.com, built on Phant, a tool for collecting data from the Internet of Things. Even though Phant can collect the data, it only does this in neat columns with values and time stamps. To turn this into something a little more visual, analog.io was born. In the future, [Luke] will add support for thingspeak and Xively data streams; the entire project is intended to be backend agnostic, allowing anyone to get their data from any thing, store it on any server, and connect it to analog.io for visualization and sharing.

Graphing data provides for some interesting opportunities, like when [Luke] found his Internet-connected water meter was logging far, far too much water consumption. A fitting on a garden hose came loose, and the hose started pouring water onto the ground, a foot away from his basement wall. That’s a swimming pool’s worth of water on [Luke]’s foundation, easily and readily graphed. He’s now adding an alert feature to analog.io.

Graphing data does present its own problems, like when a sensor sends a single erroneous data point. [Luke] is calling this a ‘burr’, and analog.io can filter out these small spikes that make data unreadable as a graph. There’s a lot of work that goes into making a usable graph, and [Luke] is crossing all his ‘t’s and dotting all his lowercase ‘j’s.

While many of the entries for the Hackaday Prize are running at the ground level with individual sensors connected to the Internet, [Luke]’s project tackles the Internet of Things problem from the other end, providing everyone a way to easily visualize their data. It’s a great Hackaday Prize entry, and will surely come in useful for a number of other prize entries as well.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: Balancing Humanoid Robots

A few years after we all tire of our remote control BB-8 droids we’ll all have personal human robots designed specifically for human interaction. We’re not there yet, but [Poh Hou Shun] out of Singapore is working on a robot like this for the Hackaday Prize. It’s called OSCAR, the Omni Service Cooperative Assistance Robot.

As with any robotics platform, the use case defines the drive system; you’ll want knobby tires or treads if you’re building a sumo bot, and a strange articulating suspension if you’re driving over alien terrain. OSCAR is built for humans, and this means a humanoid chassis is required. Legs, however, aren’t. Instead of a complex system of motors and joints, OSCAR is balancing on a ball. No, it won’t go up stairs, but neither will many other robots either.

So far, [Poh Hou Shun] has built the basics of a drive system, and it’s surprisingly similar to the BB-8 droids we’re still not tired of yet. On the bottom is a large ball held in place with a spring-loaded retainer. On top of this are three stepper motors, each holding an omni wheel. It will work, there’s no doubt about that, and with the right humanoid chassis, some sensors, and a lot of software, this could be a very cool social robot.

The 2015 Hackaday Prize is sponsored by:

Hackaday’s DC Meetup And Workshops

Washington DC has a vibrant hardware hacking community and it was out in force on Saturday night. We had over one hundred people through the door at Nova Labs in Reston, Virginia (DC metro area). This sleek and spacious hackerspace opened their doors for a Hackaday Meetup as part of a weekend packed full of activities.

The building that Nova Labs moved into not too long ago is a really well-suited area for a Hackerspace. The front half of the building includes a huge open space which has plenty of room for people to set up the hardware they wanted to show off. The back has a full woodshop, machine shop, and more, with classrooms and conference rooms in between.

Above are a set of hats with addressible LED strings wrapped around them which [ArsenioDev] brought along with him. Several members of the Wyolum team are involved with Nova Labs and they were showing off some LED matrix-based projects like the marquee cube and a 3-player reaction time game. And clacking away all night long is a vintage teletype machine that [Bob Coggeshall] fixed and connected to a Raspberry Pi.

Continue reading “Hackaday’s DC Meetup And Workshops”

Hackaday Prize Semifinalist: An Open Smartphone

One of the biggest trends in DIY electronics, both now and fifty years ago, is creating at home what is usually made in a factory. Fifty years ago, this meant radios and amplifiers. Today, this means smartphones. It used to be the case that you could pull out a Heathkit catalog and find kits for every electronic gadget imaginable. There are no kits for DIY smartphones.

For [Gerard]’s entry for The Hackaday Prize, he’s tapping into the spirit of the decades-old DIY movement and building his own cell phone. He’s calling it the libresmartphone, and it’s able to make calls and send emails, just like any other portable, pocketable computer.

The libresmartphone is built around a Raspberry Pi, with a large battery, HDMI display with touchscreen, and a GSM and GPS module rounding out the build. He’s also rolling his own software to make calls, read SMS, and take a peek into some of the phone’s hardware, like the charge state of the battery.

[Gerard]’s libresmartphone is one of the purest examples of modern DIY electronics you’ll find; it’s not about building something from a kit, but instead building something that’s needed out of the parts he has on hand. That’s the purest example of the DIY movement, and a great entry to this year’s Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: Superhero Powers

The inspiration for [K.C. Lee]’s project for The Hackaday Prize didn’t come from seeing a grave injustice or inhuman suffering. He was watching Daredevil on Netflix. A show about a blind guy who fights crime in his spare time. People don’t have superhuman senses, and radioactive material falling off a truck in New York City leads to Ninja Turtles, not superheros. Still, a crude form of echolocation is well within the reach of the a capable hacker and would be very useful for those who are legally blind.

[K.C.]’s idea for human echolocation is a small wearable with ultrasonic sensors, 6DOF IMUs, and audio and haptic feedback. With a bit of math and a lot of practice, it’s possible to walk down a hallway, avoid obstacles, and find your way around without sight.

Human echolocation is a real thing, and it’s great to see a device that makes this minor human superpower a little more accessible. [K.C.] says there are 40 million people world wide that could use a device like this, and for an idea that was inspired by a superhero on TV, it’s one of the more interesting inspirations for an entry to The Hackaday Prize.

 

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: Better DIY Aquaculture

The theme of this year’s Hackaday Prize is ‘build something that matters’. For a lot of the teams entering a project, that means solving world hunger, specifically though agriculture. Grains are great, but proteins generally taste better and [Michael Ratcliffe] is focusing his project on aquaculture, or farming fish and other aquatic life.

The problem [Michael] decided to tackle is feeding fish at regular intervals according to water temperature, the age of the fish, and how much food is already floating in the tank. This is actually a difficult problem to solve; fish grow better when they’re fed more than once a day. Currently, most aquaculture setups feed fish once a day simply because it’s so time-consuming.

[Michael] is using Pis, Arduinos, USB cameras, and a lot of experience in automation and control systems to feed fish in the most efficient way. The possibilities of the project are interesting; the best research says a more efficient feeding schedule can translate into a 20% increase in production, which is a lot of extra food for the world.

You can check out [Michael]’s introductory video below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Better DIY Aquaculture”