Hardware Controllers For Software Effects

There is an interesting multi-effect available for all you musicians out there. It’s the Turnado from Sugar Bytes. It’s a real-time effects unit that takes advantage of a computer’s horsepower to add reverb and ring mods to whatever audio you feed into it. There’s flanger and a phaser. If you feed a drum loop into your computer, there’s a stutter function which means you too can become a Soundcloud rapper.

Unfortunately, this multi-effect runs on a computer. That means you have to deal with the user interface of a desktop or laptop — GUIs, a mouse, and keyboard. Maybe a touch screen if you’re lucky.

We just wrapped up the Musical Instrument challenge in the Hackaday Prize, and if there’s one thing musicians like it’s a physical interface for all their weird gadgets. That’s what makes the Turnado Hardware MIDI Controller from [Liam Lacey]. It’s a hardware interface for a computer-based software tool.

On board are nine independent joysticks, more than that many encoders, a few buttons, and a display to have everything make sense. All of this is controlled by a Teensy, and it is mostly a plug-and-play solution for controlling Turnado. It’s a great project that makes a great software tool even more useful, and we’re glad to see it make the final cut for the Musical Instrument Challenge in this year’s Hackaday Prize.

Gutters To Gardens: The IoT Rain Barrel

There’s nothing quite like having a garden in your backyard. You get tomatoes with flavor. Fresh herbs are easy. If you’d like to go crazy, you can always grow a gigantic pumpkin. But there’s a problem with gardening: the work. You’ve got to water, and you’ve got to weed. You’ve also got to deal with the thousand ladybugs you bought for a laugh.

For his Hackaday Prize entry, [Kent] has solved at least one of these problems. It’s an Internet of Things rain barrel. It’s designed to be as simple as possible so that anyone can set it up in just a few hours, and there’s also an option to make this rain barrel solar powered, making it eminently sustainable.

The design of this rain barrel begins as you would expect, with a 55-gallon rain barrel collecting water from [Kent]’s gutters. At the bottom of this barrel is a bunghole, and from that, a 12-volt pump sucks up the water and dispenses it into the garden bed. Everything is controlled through a Particle Photon, one of the easiest ways to set up an Internet of Things project, and yes, you can control this entire setup with an Alexa. The future is now.

Below, you can check out a few of the demo videos [Kent] put together for his project. One of them is solenoids clicking off to Deep Purple’s Smoke on the Water because if you’re going to build an Internet of Things thing with clicky electromechanical valves, you might as well make it play music.

Continue reading “Gutters To Gardens: The IoT Rain Barrel”

Looks Like A Glove, Plays Like A Musical Instrument

The GePS is a musical project that shows how important integration work is when it comes to gesture controls. Creators [Cedric Spindler] and [Frederic Robinson] demonstrate how the output of a hand-mounted IMU (Inertial Measurement Unit) and magnetometer can be used to turn motion, gestures, and quick snap movements into musical output. The GePS is designed to have enough repeatability and low enough latency that feedback is practically immediate. As a result, it can be used and played like any other musical instrument that creates sound from physical movements in a predictable way. It’s not unlike a Theremin in that way, but much more configurable.

To do this, [Cedric] and [Frederic] made GePS from a CurieNano board (based on Intel’s Curie, which also has the IMU on-board) and an XBee radio for a wireless connection to software running on a computer, from which the sounds are played. The device’s sensitivity and low lag means that even small movements can be reliably captured, meaning that the kind of fluid and complex movements that hands do every day can be used as the basis for playing sounds with immediate feedback. In a very real sense, the glove-based GePS is an experimental kind of new instrument, which makes it a fascinating contender for the Musical Instrument Challenge portion of the 2018 Hackaday Prize.

This Synth Plays The Only Scale Everybody Knows

[randomprojectlab] is building a synthesizer around the pentatonic scale for the Hackaday Prize. It’s the Pentasynth, and it’s basically just a keyboard with five notes per scale.

There’s something common to every form of music. Nearly every musical tradition, from western art music, to Indonesian folk music makes use of a pentatonic scale. This is just a major scale without fourth and seventh scale degrees, or just playing the black keys on a piano.  It’s the one scale everybody knows, and forms the basis of every school of thought for music education. Noodling over the pentatonic scale is what all the cool guys do in Guitar Center. It’s absolutely the foundation of all music.

The hardware for this build is an Adafruit Metro Mini, or basically an Arduino with an ATMega328. This generates three channels of audio, two square waves — one each for the keyboard and bass accompaniment — and a pseudo-random noise drum beat. The keys are 3D printed, and the enclosure is CNC’s acrylic.

Most educational music toys out there have a few additional bits to make composing music easier. The Pentasynth is no exception, with a button that adds a drum beat, a button that adds a bassline, and a switch that makes the keyboard major or minor. It’s a great idea, and you can check out a video of the Pentasynth in action below.

Continue reading “This Synth Plays The Only Scale Everybody Knows”

The Spirit Of The 80s Lives On In A MIDI Harmonica

In the 1980s, there was a synthesizer that you could play like a harmonica. This device was called the Millioniser 2000. It utilized HIP (Harmonica In Principle) technology. The Millioniser 2000 was a breath controller wrapped in chrome-colored plastic embossed with its logo in an odd, pre-vaporwave aesthetic, and connected to a gray and green sheet metal enclosure loaded up with DIN jacks. The Millioniser 2000 is absolutely the pinnacle of late 70s, early 80s design philosophy. If it were painted brown, the Universe would implode.

Because of the rarity and downright weirdness of a harmonica synthesizer from the 80s, prices on the used market are through the roof. Musicians are a weird bunch. However, this does give someone the opportunity to recreate this bizarre instrument, and that’s exactly what [John Lassen] did for his entry for the Hackaday Prize.

While this isn’t as complex as the Millioniser 2000, it does have the same basic user interface. There’s a pressure sensor that measures how much you’re blowing. There’s a slider to change which notes are played, and there are a few buttons to change parameters, like the MIDI channel, a midi controller, or a transpose function. The electronics, like so many of the entries to the Musical Instrument Challenge in the Hackaday Prize, are built around the Teensy and it’s incredible audio library.

The Incredible Judges Of The Hackaday Prize

The time to enter The Hackaday Prize has ended, but that doesn’t mean we’re done with the world’s greatest hardware competition just yet. Over the past few months, we’ve gotten a sneak peek at over a thousand amazing projects, from Open Hardware to Human Computer Interfaces. This is a contest, though, and to decide the winner, we’re tapping some of the greats in the hardware world to judge these astonishing projects.

Below are just a preview of the judges in this year’s Hackaday Prize. We’re sending the judging sheets out to them, tallying the results, and in less than two weeks we’ll announce the winners of the Hackaday Prize at the Hackaday Superconference in Pasadena. This is not an event to be missed — not only are we going to hear some fantastic technical talks from the hardware greats, but we’re also going to see who will walk away with the Grand Prize of $50,000.


Mitch Altman

Mitch’s early claim to fame is inventing the TV-B-Gone, a device that is so devious it got several Gizmodo reporters banned from CES for life. I suppose the idea was to punish those Gizmodo reporters, but as we all know being banned from CES is a blessing in disguise. Mitch has been published in Make Magazine, 2600, and is a mentor at the HAX accelerator. He is the co-founder of Noisebridge, the legendary San Francisco hackerspace, president and CEO of Cornfield Electronics, and makes his way around to various hacker gatherings where he’s always more than eager to teach people the ins and outs of electronics, soldering, and teaching cool things.

Chris from Clickspring

Clickspring, or Chris as he’s called by people IRL, has made his mark by being one of the best machinist channels on YouTube. Chris began making videos several years ago by recreating a brass clock in his home machine shop. Over the course of several months and millions of views on YouTube, Chris delved deep into the technology of making a clock out of brass stock using the most minimal machine tools. Currently, Chris is working on a multi-part video series where he’s constructing a replica of the Antikythera Mechanism using only technology that would have been available to a Greek engineer around the year 100 BC. This is, simply, one of the greatest feats of experimental archaeology, and it’s happening right now on Chris’ YouTube channel.

Kristin Paget

Kristin ‘Hacker Princess’ Paget is currently working at Lyft designing security systems for self-driving cars and futzing about with wireless security. For fun, she builds IMSI catchers and RFID cloners, and has given talks at the Hackaday Superconference about the laws of IoT Security and at Shmoocon about how terrible contactless credit cards actually are. When it comes to wireless security, Kristin is who you want to talk to, and she was instrumental in getting the FBI off my back that one time.

Ayah Bdeir

Ayah Bdier is the founder and CEO of littleBits, an award-winning platform of easy-to-use electronic building blocks that are empowering kids everywhere to create inventions large and small. Bdeir is an engineer, interactive artist, and one of the cofounders of the Open Hardware Summit. An alumna of the MIT Media Lab, Bdeir was named a TED Senior Fellow in 2013. She’s been featured on CNBC for building the future with next-generation toys, and talking about the importance of providing children with educational and gender-neutral toys.

 

These are just a few of the amazingly accomplished judges we have lined up to determine the winner of this year’s Hackaday Prize. The winner will be announced on November 3rd at the Hackaday Superconference. There are still tickets available, but if you can’t make it, don’t worry. We’re going to be live streaming everything, including the prize ceremony, where one team will walk away with the grand prize of $50,000. It’s not an event to miss.

The Polyphonic Analog/Digital Synth Project

[Matt Bradshaw]’s entry in the Hackaday Prize is Polymod, a modular digital synthesizer which combines the modularity of an analog synth with the power of a digital synth. Each module (LFO, Envelope Generator, Amplifier, etc.) are connected with audio cables to others and the result is processed digitally to create music.

The synth is built with a toy keyboard with each key having a tactile switch underneath it, contained inside a wooden case upcycled from a bookshelf found on the street. Each module is a series of potentiometers and I/O jacks with a wooden faceplate. The modules are connected to sockets on the main board and are held in place with thumbscrews so that the modules can be easily switched out. Each module can be connected to others using audio cables, the same way modular analog synths are connected.

The main board contains a Teensy 3.6 and a Teensy Audio Adapter creates the audio for the synth. Software that [Matt] wrote runs on the Teensy and allows the digital synthesizer to run in either monophonic or polyphonic modes. In polyphonic mode, the software creates digital copies of each module to allow the playing of chords. The Teensy scans up to eight module sockets and for each module that it finds, it reads the potentiometer value as well as the status of the I/O jacks. The keyboard buttons are converted to a control voltage which can be sent to any of the modules to create a melody.

[Matt] has created a great synth that combines benefits of both analog and digital synths together and the result is an inexpensive modular synth that can create some really cool sounds. Check out the videos after the break. In the meantime, take a look at this mess of wires and this article on a slew of open-source synthesizers.

Continue reading “The Polyphonic Analog/Digital Synth Project”