Panel-Mounted Breadboard Accessories

[Chuck Stephens] grew up with Radio Shack 100-in-1 electronic kits. The ones with lots of components and spring terminals that could be wired to be a radio, a burglar alarm, or whatever.[Chuck] graduated to solderless breadboard, but did miss having panel mounted components like pots and switches easily available. So he has been building his own accessory boxes.

Of course, it is easy enough to just connect breadboard wires to component, but [Chuck] went further than that. Using boxes of different types (including a cigar box), he mounted the components properly and also wired them to a breadboard for easy connection.

If you’ve ever tried to solder to breadboard springs (we have), you’ve found it is hard to get adhesion to the shiny metal. [Chuck] solved the problem by crimping little wire hooks to the springs. The result is a good looking and functional prototyping aid.

They do make tiny breadboard style contacts (called tie point blocks; good luck finding them) for this kind of application, but the crimp technique works on common breadboards. These are cheap and much easier to find.

Of course, these days, we are as likely to want to mount SMDs than panel mounted controls. Now if we could only figure out where to put the components. If you want something less involved, take a look at the video below.

Continue reading “Panel-Mounted Breadboard Accessories”

3D Printed Vice Holds Dev Boards Beside Breadboard

The Stickvise has been a staple of the Hackaday community for a while now. If you need something held for soldering there’s no better low-cost helping hand. But if you’re just using a breadboard and a dev board of some sort, there’s another vice on the horizon that uses similar spring clamping to hold everything in place while you build something awesome.

BreadboardVise1-croppedWhile [Pat]’s inspiration came from the aforementioned Stickvise, the new 3d-printed vice is just what you’ll need before you’re ready to do the soldering. The vice is spring-loaded using rubber bands. The base is sized to fit a standard breadboard in the center with clamping arms on either side to hold dev boards such as an Arduino. This innovative yet simple de”vice” grips boards well enough that you won’t be chasing them around your desk, knocking wires out of place, anymore.

There are some nuances to this board, so be sure to check out the video below to see it in action. As we mentioned, it uses rubber bands instead of springs to keep it simple, and it has some shapes that are easily 3d printed such as the triangular rails. If you want to 3d print your own, the files you’ll need are available on the project’s site. If you want to get even simpler, we’ve seen a few other vices around here as well.

The Stickvise is available for sale in the Hackaday Store.

Continue reading “3D Printed Vice Holds Dev Boards Beside Breadboard”

Cardboard Aided Design Is The New CAD

The term “workflow” gets thrown around a lot these days. For example, say you own a 3D printer and you just came up with an idea. The temptation is to go straight to your favorite CAD tool, start designing the finished product, and then hit print. That, in many cases, can be the worst thing you could do. You would be missing out on all the variation and design choices you can easily try out with a simple series of drawings.

So, you’ve worked out your drawing, played with the design a bit, and now it is time to design in 3D on the computer right?  Not so fast. Depending on the nature of the design, you might want to follow this nice tutorial from [Willy Nicholas] on how to quickly make a cardboard prototype.

Now, obviously this won’t work on all designs. But it’s a tool everyone should keep in their bag of tricks. It allows for basically free, quick mock ups that you can hold in your hand. That last bit is important, because having something you can touch and see is a huge part of the design process.

You can also use cardboard as an excellent device for making templates for working with materials such as sheet metal. In case you have seen it, check out “Project Binky” to see what a couple of blokes in England are able to accomplish with nothing much more than a welder, a grinder and some cardboard.

Keep Your Friends Close And Your Tools Closer With This Pegboard On Rollers

There’s nothing that adds more time to building or repairing something than having to walk back and forth to grab the right tool for the job. “Wait, was that a 15/16 inch socket I needed?  Nope it’s a 3/4 inch!  Rats!”

[Brad Justinen] shares his solution to the problem in this very simple, but well documented tutorial on Instructables. He welded up a metal A-frame, then simply added pegboard to the sides and casters to the bottom. Our first thought was if something like this could be made out of lumber for a bit more of a DIY approach, but if you’ve ever moved a tool box full of tools, you know how their weight really adds up fast. So perhaps it might be best to bribe your welder-owning friend with a 12 pack of his or her favorite adult beverage.

If you haven’t used pegboard for organizing tools, it really can be a wonderful solution to getting organized. Pegboard has many more uses as well. Check out this pegboard cable organizer, or this modular soldering platform.

Dissolve Steel Drill Bits In Alum From The Grocery

Breaking a stud or a bolt is a pretty common shop catastrophe, but one for which a fair number of solutions exist. Drill it out, shoot in an extractor, or if you’re lucky, clamp on some Vise-Grips and hope for the best. But when a drill bit breaks off flush in a hole, there aren’t a lot of options, especially for a small bit. If the stars align, though, you may follow this video guide to dissolve the drill bit and save the part.

Looks like [Adam Prince] lucked out with his broken bit, which he was using to drill the hole for a pin in a small custom brass hinge. It turns out that a hot solution of alum (ammonium aluminum sulfate), which is available in the spice rack of your local supermarket, will dissolve the steel drill bit without reacting with the brass. Aluminum is said to be resistant to the alum as well, but if your busted bit is buried in steel, you’re out of luck with this shop tip.

We’re a bit disappointed that [Adam]’s video ends somewhat abruptly and before showing us the end result. But a little Googling around reveals that this chemical technique is fairly well-known among a group that would frequently break bits in brass – clockmakers. It remains to be seen how well it would work for larger drill bits, but the clocksmiths seem to have had success with their tiny drills and broaches.

As for the non-dissolved remains of the broken bit, why not try your hand at knife making?

Build Your Own Function Generator

[Scullcom] has posted the second part of his function generator build tutorial. [Scullcom] previously posted the first part of this build which covered the XR2206 monolithic function generator IC on which his design is based. In this part [Scullcom] covers the output stages and final assembly.

We’ve covered digital and analog function generator builds before. [Scullcom]’s design complements these well by providing a detailed description of the design he used, and has provided full schematics and code from the Arduino Nano used in this project. The design covers audio frequencies (~40Hz to 30KHz) with square, sine and triangle wave outputs. While the XR2206 can’t compete with modern DDS function generators, if you’re a hacker on a budget and looking for a fun project this may be just the thing for you. And even if you don’t decide to build the one, you might find [Scullcom]’s description of the output stage interesting.

Great project [Scullcom] and we look forward to your next build!

Continue reading “Build Your Own Function Generator”

Lithium Ion Upgraded Lawnmower

Upgraded LiPo Lawnmower Now Has Plenty Of Juice

Back in 2010, [Dave] took a stand. He gave up his dependence on gasoline for his lawn mower, and bought a CubCadet CC500 48V lead acid powered electric lawnmower. Within two years, the batteries had already kicked the bucket. Unwilling to let go, he replaced half of the batteries, but that wasn’t enough. It now took him two charging cycles to mow his lawn once

Enough was enough. He had to replace the whole set — but this time, with LiPo.

As an avid lover of drones, he’s been using LiPo batteries for other things for quite a while. He did some calculations and figured he would only need about 10,000mAh at 48V for a 40 minute run time, which would still be a pretty pricey upgrade. So instead he started with 2 x 22.2V 5,200mAh packs instead ($200). As it turned out, that was more than enough.

The circuitry in the CubCadet was pretty straight forward, so it was almost a drop in replacement, minus the need to use a different charger. He added in a switch to flip between charging and mowing modes to allow him to use the LiPo charger without damaging anything.

Now all he needs to do is give it an Internet connection or maybe make it remote-controlled…