Hackaday Prize Semifinalist: Bendy Solar Bluetooth Tags

Last January, [DrYerzina]’s sister couldn’t find her cat. The family searched the neighborhood for two hours until the cat came out from underneath a bed, proving once again cats own humans, not the other way around. A solution to this problem would come in the form of technology, specifically as [DrYerzinia]’s entry for the Hackaday Prize, a solar-powered Bluetooth tracking device. Yes, you can go on Amazon or eBay and buy a BLE tracker, but this version comes in a handy package: it’s built of a flexible circuit board to fit just about everywhere, including on the collar of a cat.

[DrYerzina]’s Bluetooth tracker is built around an Bluetooth LE module, with a few added passives, LEDs, and other parts glued and soldered onto a double sided, flexible PCB. To this, he’s added a flexible solar cell and a flexible LiPo battery. All of this is stuffed inside an enclosure 3D printed in flexible filament.

While the Hackaday Prize is filled with wearables, [DrYerzina]’s project is at the forefront of hombrew wearable technology. Nowhere else in the prize have we seen a dedication to making a device that bends. The best part is, he’s actually building a useful device; with just 15 minutes of sunlight a day (a condition very likely for a sleeping cat), this Bluetooth tag can work for weeks.

The 2015 Hackaday Prize is sponsored by:

Nuclear Reactor Eye Candy From Around the World

Everyone loves a field trip. It’s always fun to visit a manufacturing plant to see how the big-boys make all the cool toys we love. But there are a few places you might not want to go exploring, like inside a nuclear reactor.

Well fear not, now you can spend as much time as you would like with these amazing cut-away of nuclear facilities from across the globe. You can thank University of New Mexico Libraries Exhibition for hosting these photos that have been published in “Nuclear Engineering International” magazine over the years. If you happen to have a pdf allergy, you can also browse most of them on flickr here.

And if you want to see more amazing cutaways, there is this photo pool full of some 1300 other cutaway images to look at. If you know of other amazing engineering photos sets, leave us a note in the comments.

Seven Segment Clock Made From Scratch

[David Hopkins] built a seven segment clock, but not in a way you would think.  Typically, if one wants to make something like this, one would start off with some seven segment LEDs. [David] wanted to kick it up a notch and use RGB LEDs to get access to the wide array of different colors, but found off the shelf assemblies cost prohibitive. So, he did what any good hacker would do. He made his own.

clockThe easy part consists of Neopixels, an Arduino Nano and a DS3231 Real Time Clock. The hard part consists of Plasticard and a polymorph diffuser. Plasticard also goes by the name of Polystyrene and comes in sheets. [David] describes Polymorph as a type of moldable nylon that softens with heat, with a working temperature low enough that boiling water will suffice.

He was able to cut out the individual segments to make an impressive looking desk clock.

Transformers, Birthday Cakes in Disguise

[Russel Munro] decided to go all-out for his son’s birthday cake: he made a Transformers robot cake that, well, transforms from a truck into a robot, Optimus Prime style. His impressive build has the actions of the original: first, the front rears up to lift the head, then the back lifts to form the body and the head and arms pop out of the top. Underneath the thin fondant exterior is a 3D printed body, driven by a mechanism in the base. He used fishing line to lift the parts, which is pulled by a motor salvaged from a CD player, being driven by an EasyDriver board from Sparkfun.

The main issue he had to overcome was weight: apparently he underestimated the weight of the fondant that covers the cake, and had to do some last-minute work to strengthen the drive mechanism, and skip plans for the more ornately decorated version that his wife had planned. But the look of glee on his son’s face when he operates it at the party is the best bit. In these days of CGI and computer games, it is good to remind the kids that there is still a lot of fun to be found in ingenuity and liberal quantities of hot glue.

Continue reading “Transformers, Birthday Cakes in Disguise”

The Year of the Car Hacks

With the summer’s big security conferences over, now is a good time to take a look back on automotive security. With talks about attacks on Chrysler, GM and Tesla, and a whole new Car Hacking village at DEF CON, it’s becoming clear that autosec is a theme that isn’t going away.

Up until this year, the main theme of autosec has been the in-vehicle network. This is the connection between the controllers that run your engine, pulse your anti-lock brakes, fire your airbags, and play your tunes. In most vehicles, they communicate over a protocol called Controller Area Network (CAN).

An early paper on this research [PDF] was published back in 2010 by The Center for Automotive Embedded Systems Security,a joint research effort between University of California San Diego and the University of Washington. They showed a number of vulnerabilities that could be exploited with physical access to a vehicle’s networks.

A number of talks were given on in-vehicle network security, which revealed a common theme: access to the internal network gives control of the vehicle. We even had a series about it here on Hackaday.

The response from the automotive industry was a collective “yeah, we already knew that.” These networks were never designed to be secure, but focused on providing reliable, real-time data transfer between controllers. With data transfer as the main design goal, it was inevitable there would be a few interesting exploits.

Continue reading “The Year of the Car Hacks”

Homebrew Analog Scope Project Log

[GK] had some old CRTs lying around, so naturally he decided to build an old school analog scope with one of them. Lucky for us, he’s been documenting his progress. Since it was a big project to tackle, he started out with Spice modeling to work out all the right values.

Prototyping the power supply took some custom transformer winding, but when done, the power supply did the job. Although he’s still wiring up the Z (intensity) axis, the scope is already capable of displaying signals and even text characters using a character generator he built earlier (see video below).

[GK] spends most of the time so far talking about the high voltage power supply design. For the particular tubes he had on hand he needed +200V, -400V, -550V, and 6.3VAC for the CRT heater. This is certainly not the typical Arduino-based digital scope that everyone builds at least once.

We love analog scopes for art projects, logic analyzer conversions, and gaming. Of course, if you don’t have an old CRT in your parts bin, you might consider trying a laser.

Continue reading “Homebrew Analog Scope Project Log”

The Eulogy of Local Hidden Variables

During the early 1900’s, [Einstein] was virtually at war with quantum theory. Its unofficial leader, [Niels Bohr], was constantly rebutting Einstein’s elaborate thought experiments aimed at shooting down quantum theory as a description of reality. It is important to note that [Einstein] did not disagree with the theory entirely, but that he was a realist. And he simply would not believe that reality was statistical in nature, as quantum theory states. He would not deny, for example,  that quantum mechanics (QM) could be used to give a probable location of an electron. His beef was with the idea that the electron doesn’t actually have a location until you try to measure it. QM says the electron is in a sort of “superposition” of states, and that asking what this state is without measurement is a meaningless question.

So [Einstein] would dream up these incredibly complex hypothetical thought experiments with the goal of showing that a superposition could not exist. Now, there is something to be said about [Einstein] and his thought experiments. He virtually dreamed up his relativity theory while working as a patent clerk at the ripe old age of 26 years using them. So when he had a “thought” about something, the whole of the scientific world stopped talking and listened. And such was the case on the 4th of May, 1935.

Continue reading “The Eulogy of Local Hidden Variables”