Building A Hydraulic Loader For A Lawn Tractor

Lawn tractors are a great way to mow a large yard or small paddock. They save you the effort of pushing a mower around and they’re fun to drive, to boot. However, they can be even more fun with the addition of some extra hardware. The hydraulic loader build from [Workshop from Scratch] demonstrates exactly how.

The build is based around a John Deere LX188 lawn tractor, which runs a 17 horsepower Kawasaki engine and features a hydrostatic transmission. It’s a perfectly fine way to mow a lawn. In this case, though, it’s given new abilities with the addition of a real working loader. It’s fabricated from raw steel from the arms right down to the bucket. It’s all run from a hydraulic pump, which is mounted to the engine via an electromagnetic clutch. The clutch can be engaged when it’s desired to use the hydraulics to actuate the loader.

As you might expect, the humble lawn tractor isn’t built for this kind of work. Thus, to support the extra equipment, the mower was also given some frame reinforcements and a wider track for stability.

If you’re trying to give your neighbours mower envy, this is how you do it. Or, you could go another route entirely. Video after the break.
Continue reading “Building A Hydraulic Loader For A Lawn Tractor”

DOOM Runs On Husqvarna’s Robot Lawnmower

DOOM has been ported to a lot of platforms — to the point where the joke is kind of getting old now. Evidence of that is available in the fact that brands are now getting in on the action. Yes, as reported by The Register, you can now officially play DOOM on your Husqvarna’s Automower.

Nice, right? Speedrun it on this interface.

We had to check if this was some kind of joke; indeed, the April release date had us looking at the calendar. However, it seems to be legit. You’ll be able to download a version of DOOM via the Husqvarna Automower Connect App, and play it on the tiny screen of your robot lawnmower. Hilariously, due to the size of the game, Husqvarna notes it “may take up to a week before the game is playable” due to the time it takes the mower to download it, along with a necessary software update.

Controls are simple. The knob on the robot is used for turning left and right, while pressing start lets you run forward. Firing weapons is done by pressing the control knob.

We’ve seen some quality ports before, including an arcade port that was particularly cool. Really, though, at this stage, you have to work harder to impress. Show us DOOM running on a Minuteman launch console or something. Continue reading DOOM Runs On Husqvarna’s Robot Lawnmower”

Lawny Five Keeps Lawn Mowed, Snow Plowed

Although there’s been considerable excitement over the past half century of a Jetsons-like robotic future, outside of a few niche uses of our day-to-day lives there hasn’t been much in the way of robotic assistants coming to ease our physical household workloads. Sure, robots exist in manufacturing and other industrial settings, but the vast majority of us won’t see a robotic revolution unless we make it for ourselves. To that end, [Jim] has begun construction of a robot that can at least mow his lawn and eventually plow his driveway, among other potential tasks.

The robot, called the Lawny Five, is a tracked vehicle currently under remote control but with a planned autonomous capability. The frame includes a set of caster wheels at the front to take advantage of the differential steering of the tracks, and between everything is where the mower, plow, or other tool can sit. The attachment system is based on a 2″ receiver hitch, allowing the robot to eventually change tools at will while still preserving the usefulness of the tools in their original state. The robotic platform has been tested with the mower on a wet lawn with a 20° slope and showed no signs of struggle (and didn’t damage the grass) so it’s ready to take on more challenging tasks now as well.

With the core of the build out of the way, [Jim] is well on his way to a robotic lawnmower and potentially even an autonomous one, not to mention one with interchangeable tools that he hopes will be put to work in other ways like parking his boat in a small space by his house. For those maintaining a piece of land a little more involved than suburban turfgrass, there are other robotic platforms capable of helping out farmers with things like planting, watering, and weeding.

Continue reading “Lawny Five Keeps Lawn Mowed, Snow Plowed”

Hackaday Prize 2023: Computer Vision Guides This Farm Mower

It’s a problem common to small-scale mixed agriculture worldwide, that of small areas of grass and weeds that need mowing. If you have a couple of sheep and enough electric fence there’s one way to do it, otherwise, if you rely on machinery, there’s a lot of hefting and pushing a mower in your future. Help is at hand, though, thanks to [Yuta Suito], whose pylon-guided mower is a lightweight device that mows an area defined by a set of orange traffic cones. Simply set the cones around the edge of the plot, place the mower within them, and it does the rest.

At its heart is a computer vision system that detects the cones and estimates distance from them by their perceived size. It mows in a spiral pattern by decreasing the cone height at which it turns, thus covering the whole area set out. Inside is a Raspberry Pi doing the heavy lifting, and because it’s designed for farmland rather than lawns, it has an adaptive track system to deal with obstacles. In its native Japan there is an ageing rural population, so it is particularly suitable for being operated by an older person. See it in action in the video below the break.

A robotic mower aimed at farms is certainly unusual here, but we’ve seen a lot of more conventional lawnmowers.

Continue reading “Hackaday Prize 2023: Computer Vision Guides This Farm Mower”

Toy Bulldozer Becomes Epic Terrifying Lawnmower

Regular lawnmowers are a perfectly fine way to mow your lawn, but they can be a bit boring. They’re also not always the best at tackling thick brush and bushes. [rctestflight] has a solution to both of those problems, in the form of a plant-munching bulldozer.

The concept is simple — it starts with a hefty miniature RC bulldozer. Weighing in at 27 kilograms (60 pounds), the beast has actual functioning hydraulics to control the blade and plow. It struggles somewhat with traction, particularly in muddier conditions, and can’t really dig much, but it nonetheless looks the business.

As cool as it was, [rctestflight] decided to employ it for some real yard work by outfitting it with a mowing rig. The ‘dozer was outfitted with a pair of sawblades, run by twin brushless motors for plenty of grunt. That gave the bulldozer the ability to mow through not just lawn, but even thick blackberry bushes and two-foot high weeds.

It’s not great at steering, but it’s able to destroy thick brush with reckless abandon. Fundamentally, it looks like a very fun way to mow an overgrown yard.

Continue reading “Toy Bulldozer Becomes Epic Terrifying Lawnmower”

Grass Gauge Tells You When The Lawnmower’s Catcher Is Full

If you’re not mowing your lawn regularly, you’re probably familiar with the hassle of overfilling your catcher. Grass clippings end up scattered everywhere, and you end up with a messy yard after all your hard work. [Dominic Bender] designed a mower fill gauge to eliminate this problem which shows you when your catcher is getting full.

The concept behind the gauge’s operation is simple. Catcher-based mowers rely on airflow from the spinning blades to carry grass into the catcher. That airflow is, in this case, also used to push up a flap mounted in the top of the catcher. As the catcher fills with grass, that airflow no longer reaches the flap, which sinks down, indicating the catcher is getting full. The basic design is a simple 3D printed flap and housing that uses a short piece of filament as a hinge. There’s also a small mesh guard to stop the flap getting clogged by the incoming grass clippings.

If you’re the forgetful sort, or your enthusiastic children aren’t always emptying the catcher when they should, this gauge might be a useful tool for you. Alternatively, consider robotizing your mowing in the vein of other builds we’ve seen, including one by yours truly. If you’ve got your own nifty gardening hacks, be sure to drop us a line!

Lawnmower Doesn’t Need A Base Station

A recent tour of an old WWII-era aircraft carrier reminded us how hard navigation was before the advent of GPS. It used to be the work of skilled people to sight the sun or the stars and use giant books to figure out a vessel’s position. Now you just ask your phone to listen to some GPS satellites and you have precision undreamed of with other systems. But GPS sometimes isn’t enough. Just using conventional GPS, you can locate yourself to a couple of meters. The new L5 band, which isn’t on all satellites yet, can get you to about 30cm. But if you need better — up to around 1 or 2 cm — you need to use special techniques lumped together as GNSS enhancements. [Viktor] wanted to have an Arudino -based lawnmower, but wanted to use more conventional GPS techniques along with ultrawideband (UWB) ranging tags.

Given that the ranging anchors are in the mowing area, we aren’t sure why the mower even has GPS other than to geofence so you can’t start autonomous operations until you are in range of the tags. The three anchors are placed in a triangle, so if the robot knows the distance to each tag it can use some math to locate itself inside the area quite precisely.

Continue reading “Lawnmower Doesn’t Need A Base Station”