Simple Tweak Alerts You When You’ve Left Your Headlights On

landrover-headlight-buzzer

[Paul McGuinness] owns a Series III Land Rover, and as the vehicle as formerly used by the British military, it’s lacking some of the modern amenities he was accustomed to. Overlooking the lack of power steering and all-around drum brakes, the one item that [Paul] really missed was a buzzer that let him know when he left the lights running.

On more than one occasion, he’s had to have “The Sarge” jump started after leaving the lights running all day. Explaining the humiliation involved with jump-starting a Land Rover with a Nissan Micra (an unfortunate excuse for a vehicle, known here in the states as the Nissan Versa) in his blog, [Paul] decided that he’d had enough – it was time to build a headlight warning buzzer.

The circuit itself is straightforward, consisting of a normally closed relay connected to his headlights and ignition, along with a buzzer. When the key is in the ignition and the lights are on, the relay is open and the buzzer is silent. However, if the lights are on and the relay is not supplied power from the ignition, it closes and sounds the alarm.

A simple fix for a frustrating problem – we like that.

Digital Speedometer With An Arduino

[Martyn] is restoring a 32-year-old Honda motorcycle, so when the ancient speedometer broke last year he thought it was prime time to start of a digital speedometer project. We’re loving the results so far, and would love seeing it on a nicely restored bike.

Instead of the relative horror of driving 40 LEDs with a single Arduino, [Martyn] bit the bullet and got a Maxim 7221 LED driver. Controlling 64 LEDs  over a three-wire interface simplified the board design somewhat, allowing [Martyn] to etch his own PCB with the toner transfer & HCl/H2O2 method. To actually power and control the entire circuit, [Martyn] used an Arduino loaded up with a program based  LedControl library makes programming the spedometer a snap.

Although the speedo works, [Martyn] says he isn’t proud of how it looks. We don’t mind – the candy colored jumpers add a nice flair to the project, and they’re hidden behind the face plate of the speedometer. We’re sure once he gets the neutral, high-beam, and warning indicators working with the LED bar array / tachometer, everything will look awesome.

via reddit

Riding Rockets And Jets Around The Frozen Wastes Of Sweden

An attentive reader tipped us off to the guys at Mobacken Racing (translation), a group of Swedes dedicated to the art and craft of putting jet and rocket engines on go karts and snowmobiles.

One of the simpler builds is a pulse jet sled. Pulse jets are extremely simple devices – just a few stainless steel tubes welded together and started with a leaf blower. The simplicity of a pulse jet lends itself to running very hot and very loudly; the perfect engine for putting the fear of a Norse god into the hearts of racing opponents.

Pulse jets are a bit too simple for [Johansson], so he dedicates his time towards building a jet turbine engine. Right now it’s only on a test stand, but there’s still an awesome amount of thrust coming out of that thing, as shown in the video after the break.

In our humble opinion, the most interesting build is the 1000 Newton liquid fuel rocket engine. The liquid-cooled engine guzzles NOX and methanol, and bears a striking resemblance to liquid fuel engines we’ve seen before. Sadly, there are no videos of this engine being fired (only pics of it strapped to a go-kart), but sit back and watch a couple other hilariously overpowered engines disturbing a tranquil sylvan winter after the break.

Edit: [Linus Nilsson] wrote in to tell us while the guys at Mobacken Racing are good friends, [Linus], his brother, and third guy (his words) are responsible for the pulse jet sled. The pulse jet is actually ‘valved’ and not as simple as a few stainless steel tubes. The pulse jet isn’t started by a leaf blower, either, but a four kilowatt fan. [Linus]’ crew call themselves Svarthalet racing, and you can check out the Google translation here.

Continue reading “Riding Rockets And Jets Around The Frozen Wastes Of Sweden”

Robotic Assist Helps Paraplegic Stand And Move Around

Seeing this device help a man get up out of his wheelchair makes us wonder why this hasn’t been around for ages. The design principles behind the Tek RMD greatly benefit those without use of their legs. But it’s not just to help him stand, it also serves as motorized transport that makes bulky electric wheelchairs look so last century.

Instead of having the support structure beneath the rider, the RMD (Robotic Mobilization Device) uses a sling-like method to hang from the hinged arm. A folding handlebar can be raised up, allowing the rider to move from sitting to standing with a bit of help from the machine. Whether upright or sitting, the device can travel using its electric motors. In fact, this tip was sent in because it looks very much like riding a Segway.

The video demonstration after the break really hits home the functionality provided. This is an instant quality of life improvement, breaking down some of the barriers of moving around in confined quarters with a motorized wheelchair. There is also a lot to be said for having the option to stand. The demo shows several circumstances like shopping at the market, going through the checkout, and grilling out. What an amazing use of technology.

Continue reading “Robotic Assist Helps Paraplegic Stand And Move Around”

Never Miss Your Transport With This Bus Arrival Notifier

[John Graham-Cumming] was all set to start a new project based on the Raspberry Pi. Well, that was until shipment was delayed due to manufacturing issues. Not to fret, he transitioned over to a router board which displays the arrival countdown for mass transit bus service.

He based the build on a web page the Transport for London provided. You can load it up and see if your bus is running on time or not. There’s no published API, but by studying the source code from the site [John] was able to figure out how the JSON commands were formatted.

The next step is building a standalone device to pull the data and display it. The board seen above is from a Linksys WRT54GL router. This longtime favorite has a serial port header which can be driven from the Linux kernel. He wired up a jack on the router’s case, and uses an extension cable to get from it to the 7-segment displays mounted in a model of the bus. Since there’s four digits the display can tell you minutes until the arrival of two different buses.

[Thanks Pseudo Lobster]

Another Homebrew Segway Clone Comes In At Under $300

[Matt Turner] tipped us off back in January about his homemade Segway project. Unfortunately that message slipped through the cracks but we’re glad he sent in a reminder after reading Friday’s feature an a different 2-wheeled balancer.

We like it that he refers to this project as being on the budget of a graduate student with a young family. We certainly understand where he’s coming from, and we hope he can ride this to job interviews to show them he truly lives engineering. The control circuitry is a bit higher-end than we’re used to seeing. He chose a Cypress CY8C29466 SoC to control the device. But the sensors are a common choice, using the Wii Motion Plus and Wii Nunchuk for the gyroscope and accelerometer they contain. This is a no-brainer since the sensors are high-quality, cheap and available locally, and communicate of the standard I2C protocol.

When looking for motors [Matt] was happy to find an old electric wheelchair on Craig’s List. This also gave him a gear box, wheels, and tires. He added a pair of motor drivers, with his own alterations to suppress feedback. Sounds like they run a little hot because he plans to add cooling fans to them in the future. But this first iteration is up and running quite well as you can see in the clip after the break.

Continue reading “Another Homebrew Segway Clone Comes In At Under $300”

Self-balancing Transport Is Arduino-controlled

[Nick Thatcher] has built several iterations of a homebrew Segway, and the latest version is very impressive. When developing the project he figured there was just no way the thing would ever work, which led to its name, the No-way.

After the break you can catch a video of [Nick’s] test-ride. Looks like the two-wheeler is ready for daily use. You can just make out a red kill-switch on the right side of the polycarbonate body. This lets you disconnect the power if things get out of hand, or just when you’re done riding it. But there is also a dead-man’s switch which we believe uses two sensors where your feet go on the enclosure’s top surface. The handle has some indicator lights built into it, as well as buttons under each thumb which are used for steering. Control circuitry includes an Arduino UNO which reads a gyroscope/accelerometer sensor board from SparkFun. Two 7.2 Ah batteries provide 24V for the pair of electric scooter motors that turn the wheel-barrow wheels.

We love looking at these Segway clone project. So if you’re working on one of your own don’t forget to document your progress!

Continue reading “Self-balancing Transport Is Arduino-controlled”