New Siri Hack Controls Your Car

siri-viper-smartstart

Siri can make appointments, tell you the weather, but now she can start your car as well!

After we showed you how Siri could be hacked to use a custom proxy and execute custom commands, we knew it wouldn’t be long before additional hacks would start rolling in. [Brandon Fiquett] thought it would be great if Siri could remotely control his car, so he built this functionality into Siri using [Pete’s] proxy software.

The hack relies on the Viper remote start system he had installed in his car, along with a few modules loaded into his proxy server. His proxy server tweaks allow Siri to interpret a preset list of commands such as “Vehicle Start” and “Vehicle Arm/Disarm”, relaying the commands to the Viper SmartStart module.

We imagine that the back-end functionality is not unlike the existing SmartStart iOS app, but it looks like [Brandon] beat Viper to the game since Siri has not been made available to 3rd party developers as of yet.

Check out the video below to see Siri in action, then be sure to swing by his web site for additional videos as well as the code that makes this possible.

Continue reading “New Siri Hack Controls Your Car”

Building A 1300 Lumen Bike Light

[Brainiac27] isn’t going to let the absence of sun prevent him from biking. He has no trouble lighting his path with this 1300 Lumen bike light he built.

The light source is a 3-up star by Cree. It puts off a lot of light, but also generates quite a bit of heat which is the reason for that large heat sink. It is meant to be used with a CPU but works well for this purpose thanks to the adhesive thermal paste used to unite the two parts.

The mounting bracket is a custom job, bent from 1″ by 1/8″ aluminum bar. [Brainiac27] had some issues with length the first time he tried making it. For his second attempt he started with an overly long piece, made the bends from the center out, and only made cuts once the bends were all completed. The bracket makes it easy to mount to his bike, with the battery stored in a bike bottle and a remote switch (with attaches to the jack you can see on the project box above) hidden underneath one of the brake hoods.

The intensity of this light nearly doubles one of our other favorites.

Human Flight At 190 MPH With No Steering

It’s been a while since we looked in on a TED talk but this one is fantastic. [Yves Rossy] is interviewed about his jet-powered flight wing at the TED conference. He designed the unit as a form of personal flight. He straps it on, jumps out of a plane, then flies across the sky until he runs out of fuel. There’s no steering mechanism; it’s more of a fixed-wing hang glider plus jet turbine engines. But the pilot can affect the direction of the wing by moving his body.

We’ve embedded the video after the break. The first five minutes are all flight footage (which you’re going to want to watch… we specifically kept the banner image vague so as not to spoil it for you). After that, you’ll enjoy the interview where details about the hardware and its operation are shared.

The wing itself is about 2 meters across, hosting four kerosene-powered turbine engines. There’s about eight minutes worth of fuel on board, which [Yves] monitors with a clock while also keeping an eye on the altimeter. Landings are courtesy of a parachute, with a second on board as a backup. If things go badly–and they have as you’ll hear in the interview–an emergency release frees the pilot from the machine.

Want to build your own? Maybe this will get you started.

Continue reading “Human Flight At 190 MPH With No Steering”

Adding Keypad Security To Your Automobile’s Ignition System

[BadWolf] managed to make some free time to get back to his own electronic projects. This time around he’s created a security system for his car. It’s patched into the ignition, preventing the engine from starting when the key is turned. A driver must first insert the key, then type the combination on a keypad in the center console before the car will fire up.

While he was working on the project he also decided to add a start button to the dash-board (we think it does make it look like a later model vehicle). The keypad is driven by an Arduino Nano which has the start code stored in it. Power for the system is provided by a USB hub hidden behind the dash which he thinks will also come in handy with future hacks.

When the proper code is entered, you’ll hear a rendition of the Super Mario Bros. theme. The speaker also lends a pleasant beep with each keypress. See the demo clip after the break to hear it for yourself.

Continue reading “Adding Keypad Security To Your Automobile’s Ignition System”

LED Strip And UC Add Some Flash To Your Tail Lights

[Dave] spiced up his new 2012 Nissan Juke with a little tail-light amendment. You can see that outlining the rim of the light enclosure is a series of dots. This is an LED strip that he added to augment the brake lights. It’s glued in place, and features side emitting LEDs so that the light will be focused behind the car.

To control the strip he’s using an ATtiny85 microcontroller. It’s the chip on the right, and an optoisolator next to it protects it from the 12V vehicle power which drives the strip (via a MOSFET), and acts as a trigger when the brake pedal is pressed. He wrote a few effects into the firmware. When the lights are turned on, the strip fades up to 75% over about eight seconds. When the brake pedal is pressed they go to 100%. Check out the video after the break (it seems a little weird to us, as the video runs 18 seconds but the audio keeps going… YMMV).

We’ve seen a couple of tail light concepts that flash the brake lights when you stomp on the pedal. Unfortunately the Juke (and all other cars as far as we know) don’t have functionality built-in to sense when you’ve really given the brake a sudden jolt. It makes us wonder if this info could be gleaned from the CANbus? Continue reading “LED Strip And UC Add Some Flash To Your Tail Lights”

The Folly Of Adding An Auxiliary Audio Input To A Hyundai Sonata

Why auxiliary audio inputs haven’t been standard on automotive head units for decades is beyond us. But you can bet that if you’re looking at a low-priced sedan you’ll need to buy an entire upgrade package just to get an audio jack on the dash. [Jon W’s] Hyundai Sonata didn’t have that bells-and-whistles upgrade so he decided to pop his stereo out and add his own aux port.

A big portion of this hack is just getting the head unit out of the dash. This is made difficult on purpose as an anti-theft feature, but [Jon’s] judicious use of a butter knife seemed to do the trick. He lost some small bits along the way which were recovered with a Shish Kebab skewer with double-stick tape on the end.

With the head unit out, he opened the case and plied his professional Electrical Engineering skills to adding the input. Well, he meant to, but it turns out there’s no magic bullet here. The setup inside the unit offered no easy way to solder up an input that would work. Having done all of the disassembly he wasn’t going to let it go to waste. [Jon] grabbed a nice FM transmitter setup. He wired it up inside the dash and mounted the interface parts in the glove box as seen here.

It’s nice to know we’re not the only ones who sometimes fail at achieving our seemingly simple hacking goals. At least [Jon] was able to rally and end up with the functionality he was looking for.

Here’s Your Flying Car

We’ve seen quadrocopters galore over the past few years. We’ve never seen one big enough to lift a person until now.

[Thomas], [Stephan], and [Alexander] of e-volo have been working on a gigantic, human-lifting multicopter for a few years now. A few days ago, their prototype took to the air carrying a fully human pilot. There aren’t a whole lot of details on their build, but from what we can tell the flight was powered entirely by batteries.

The test vehicle looks to be a study in minimalism. The landing gear looks to be a repurposed yoga ball, and the chassis is just four pieces of aluminum tube welded into a cross. The the power plant for the prototype is four brushless motors in each quadrant of the vehicle. That’s right – there are 16 motors spinning around the pilot.

This isn’t the first time we’ve seen a build based on Doctor Robotniks designs. Earlier this year, some guy in China built a very nice deathtrap an octocopter. The e-volo team definitely has the leg up in safety considerations – they have actual design and engineering studies

The good news is the e-volo team wants to improve their prototype and sell it to the masses. The bad news for Americans is the FAA hasn’t taken too kindly to electric flying machines. The team is working on a hybrid drive version, and as long as the weight is kept down, we can always get an ultralight cert.

Check out the video of some 16-blade hovering action after the break.

[youtube=http://www.youtube.com/watch?&v=L75ESD9PBOw&w=470]