DIY Bike Wheels Welded With Rebar

[Liebregts] is working on a trike design, and needed a pair of wheels to go up front. Regular bicycle wheels wouldn’t do, as they’re not designed to work with a single-sided support. They also wanted to be able to mount disc brakes. Thus, they set about building a set of custom wheels to do the job.

The build began with a regular set of 20″ bike wheel rims with all the spokes taken out. A ring of steel rebar welded on the inner perimeter gave the rims more strength. A set of hubs and axles were then fabbed up with a welder and lathe, with provisions for bolting on disc brake components. Lengths of rebar were then welded in as non-adjustable spokes. Next, it was time for a coat of paint. Finally [Liebregts] mounted the tires and brakes, and called the job done.

Obviously, it is possible to buy wheels specifically for trike builds. However, [Liebregts] found it difficult to find exactly what they wanted, particularly where the disc brake option was concerned. The best option was a custom build.  The resulting wheels are obviously much heavier than traditional bike wheels, but they’re also likely a fair bit stronger, too. If you need to weigh down a tarpaulin, for example, these wheels might just do the trick.

We’ve seen some other crazy wheels on trikes before, too! Oh, and who says wheels need to be a full circle, anyway? Creativity will never cease to amaze!

Velomobile Gets Electric Assist

What do you get when you throw all accepted bicycle designs out the window and start fresh? Well, it might look a bit like [Saukki’s] velomobile.

Most bikes come in a fairly standard, instantly-recognizable shape which has been popular for over a century now. While it’s a vast improvement over its predecessor, the penny-farthing bicycle, there’s no reason that a bike needs to have this two-triangle frame shape other than that a pretentious bicycle racing standards group says they have to. If you want to throw their completely arbitrary rulebook out of the window, though, you can build much more efficient, faster bikes like recumbents or even full-fairing velomobiles. And if you want to go even faster than that, you can always add a standard ebike motor kit to one.

This is a lot harder than putting a motor on a normal bicycle. Bicycles tend to have standardized parts and sizes, and [Saukki]’s velomobile is far from the standard bike. First, he needed custom mounts for the display and also for the battery, which he needed to make extra wide so its weight wouldn’t rip through the carbon fiber body. The emergency brake lever motor cutoff needed to be dismantled to work with his control system too, and finally the mid-drive motor needed a custom mount as well. It’s a TSDZ2 motor that comes with torque-sensing pedal assist.

The changes didn’t stop there. The velomobile max speed is much higher than a standard bike. This called for some gear ratio changes, in the form of a monster 60-tooth chain ring.

This leads to the one major problem with this build which is that the velomobile can achieve such high speeds on its own that the electric assist cuts out for most of the ride. There is a legal requirement over much of Europe that e-bikes only have pedal assist (without a throttle) and that they stop assisting above a specific speed. But if you want to build an e-bike that pushes the boundary of the law instead of strictly adhering to it, take a look at this one which uses a motor from a washing machine.

Continue reading “Velomobile Gets Electric Assist”

Unconventional Longboard Built From Single Slice Of Tree

Typically, skateboards and longboards are made out of many laminated layers of wood. This gives them a pleasing flex that produces a comfortable ride. However, it’s not the only way to do things. [DesignCo] went for an unconventional design, using a large slice out of a tree instead.

The benefit of using a section of tree trunk for a board is that it has a very attractive look with all the rings visible. To turn it into a board, it was first roughly cut to shape, before being planed down to a uniform thickness. Further shaping was then achieved with the use of a flap wheel on an angle grinder. The wood was finished with several coats of tung oil before being given a final seal with matte lacquer. A solid steel tail was then prepared to match, shaped with an nice curve and with two bolts screwed in. These bolts were then epoxied into the board, joining the two, and trucks installed underneath.

The final build looks stunning, and is ride-able too. It’s likely a little slipperier than a board with grip tape, and it probably wouldn’t handle bumps as well as a traditional design. Long boards are rarely about performance anyway, though, and this board looks like great fun to get around on.

We’ve seen non-traditional longboards before, too. Video after the break.

Continue reading “Unconventional Longboard Built From Single Slice Of Tree”

Ebike Charges In The Sun

Ebikes are slowly taking the place of many cars, especially for short trips. Most ebikes can take riders at least 16 kilometers (10 miles) without too much effort, at a cost that’s often a single-digit percentage of what the same trip would have been with an internal combustion engine. If you’re interested in dropping the costs of your ebike trips even further, or eliminating it entirely, take a look at this small ebike with integrated solar panels.

While any battery can be charged with a sufficiently large array of solar panels and the correct electronics to match the two systems together, this bike has a key that sets it apart from most others: it can charge while it is being used to power the bike. Most ebikes don’t have charging enabled during rides, so if you want to use the sun while riding to extend the range of the bike you’ll need to find one like this. This bike uses two 50 W panels on the two cargo areas of the bike, attached to a 400 W MPPT charge controller. The Lectric XP 2.0 ebike has a motor with a peak rating of 850 W, but in a low pedal-assist mode the solar panels likely output a significant fraction of the energy used by the electric drivetrain.

Even if the panels don’t provide the full amount of energy needed for riding around, the project’s creator [Micah] lives in Florida, so just setting the bike outside in the sun for six to eight hours is enough to replenish most of the battery’s charge. It’s probably not going to win any solar-powered bike races anytime soon, but for an efficient, quick bike to ride around town it’s not too shabby.

A streamlined black boiler with a headlight at the tip dwarfs the 5th wheel trailer and secondary trailer it is attached to.

Bringing A Steam Train Back From Extinction

There’s no denying that while railroads have switched to diesel and electric as their primary power sources, there’s a certain allure to the age of steam. With that in mind, a group of Pennsylvania train fans are bringing the alleged fastest steam train back from extinction.

It takes real dedication to build a 428-ton device from scratch, but these rail aficionados seem to have it in spades. Armed only with the original blueprints and a lot of passion, this team has already finished construction of the boiler and nose of the Class T1 replica which is no small feat. This puts the train at approximately 40% complete.

Some changes are planned for the locomotive including a change to fuel oil from coal and replacing the poppet valves prone to failure with camshaft-driven rotary valves. While not original hardware, these changes should make the train more reliable, and bring the world record for the fastest steam locomotive within reach. If the T1 replica can reach the 140 MPH storied of the originals, it will smash the current record of 126 MPH held by a British train, the A4 Mallard, which would be exciting indeed.

Speaking of Pennsylvania and steam, a trip to Scranton is a must for anyone interested in the age of rail.

This ESP32 CAN!

Since modern cars use the CAN bus for so many of their functions, it’s unsurprising that it’s a frequent object of interest for those in our community. Some people go no further than commercial plug-in analysers, while others build their own CAN devices. This is what [Magnus Thomé] has done, with his RejsaCAN microcontroller board.

It’s a small PCB with an onboard CAN interface from an ESP32-S3 and a car-friendly power supply circuit, and perhaps most importantly, it has an auto-shutdown feature to prevent battery drain. Software-wise it’s a blank piece of paper for the user to roll their own application, but since the ESP32 is supported by the Arduino ecosystem, there are libraries that make talking CAN as easy as it can be.

[Magnus] has a list of potential applications for the board, many of which take advantage of the ESP’s wireless capabilities. So far, [Magnus] has hooked it up to an LCD display, but we can see so many other useful things coming out powered by something like this.

You haven’t tried playing with your car’s CAN bus yet? Maybe you should read this to whet your appetite.

A Rail Cart For The Space Conscious Passenger

For those who live in countries where there are plenty of abandoned railways, a popular way to explore them has been by means of home made rail carts. These are usually rudimentary rail trolleys with a small internal combustion engine, and a host of fascinating videos of them can be found online. Such a trolley has one disadvantage though — it’s not the most compact of devices. [Cato] has come up with a rail cart that’s extremely portable by replacing the engine with the guts of a pair of hoverboards.

The chassis of the machine is made from aluminium extrusion, and its deck from plywood. The wheels are the stock hoverboard wheels with flat flanges applied, which while they don’t have the ideal flange profile of a rail wheel are good enough to keep the thing on track. Finally to control the thing a rather stylish little 3D printed single-axis joystick serves as a combined throttle and brake.

Those of us who hail from places where abandoned railways have their track speedily ripped up can only gaze in envy and imagine speeding along the rails on one of these. The build starts with a warning never to use one of these on an active track, but should you wish to drive a real train there are plenty of places to do that.