Electric Skateboard Becomes Mobile Skate Park

While building a skate park might not appear to have much in common with software development, at they very least, they both suffer from a familiar problem: scalability. Bigger skate parks need more ramps and features, and there’s no real way to scale up a construction project like this efficiently like you could with certain kinds of software other than simply building more features. This was something [Kirk] noticed, but was able to scale up a skate park in a way we’ve never thought of before. He built a mobile skateboard ramp that can turn any place into a skate park.

The mobile and approximately sidewalk-width platform is able to move around thanks to an electric skateboard as its foundation. It adds a NVIDIA Jetson Nano for control with a PS4 controller for input, although steering a skateboard with an actuator took a few prototypes to figure out since skateboards are designed to be steered by shifting the rider’s weight. Since they are already designed to carry a human-amount of weight, though, it was at least able to tote the ramp around with relative ease. Another problem was lowering the ramp into position when it got to the desired area, but with an electrically-controlled jack and a few rounds of debugging was eventually able to do this without much issue.

With all of that project development behind him, [Kirk] can finally realize his dream of having ramps scattered all across his neighborhood like in the classic videogame Paperboy, without needing to build them all individually or ask for permission to place them around his neighbor’s homes. For any future iterations of this build, we might consider adding tank tracks to the electric skateboard for better off-road performance, like facilitating a jump across a patch of grass.

Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding

Injection molding is usually focused on high-volume production, but that doesn’t always need to be the case. The Recycled Plastic Skateboard Deck project centers on the use of injection molding for a relatively low-volume production line using open-source tooling.

RPSD is part of the Precious Plastics ecosystem and uses the existing and open-source shredder and extruder to turn locally-sourced plastic waste into melted plastic. The core of the tooling is in the aluminum CNC-machined top, bottom, and edge mold sections bolted to a thick steel support structure that give the skateboard deck its shape. The edge section defines the deck’s perimeter, and 64 cartridge heaters are inserted into it to bring the mold up to temperature. The mold is mounted on a scissor lift mechanism to allow it to be aligned with the extruder, and temperature control electronics are housed in a laser-cut metal enclosure, which is bolted to the base of the mold structure.

To be clear, this is not a cheap way to make a couple of skateboard decks, but rather a way for small shops to do injection molded decks in-house. At ~$7500 for the components of this relatively large mold, excluding the extruder, you’d still have to sell quite a few decks to make it economically viable.

Although small-scale injection molding has become a lot more accessible, the cost of machined metal molds will remain high for the foreseeable future. However, if you only need small, flexible parts, you could probably do it for under $50 using 3D printed molds and silicone.

Continue reading “Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding”

3D Printed Skate Trucks Do Surprisingly Okay

If you can buy something off the shelf, there’s a good chance that someone has tried to 3D print their own version. [Daniel NorĂ©e] did just that with skateboard trucks, whipping up a design of his own.

The main body of the trucks is 3D-printed, as is the hanger. A 195 mm M8 threaded rod is then used through the center of the trucks in order to provide an axle for fitting the wheels and bearings themselves. He 3D-printed the parts using a carbon-fiber reinforced nylon with the slicer set up to maximize strength. In testing, they rolled around the neighbourhood just fine.

[Mayer Makes] found the design online, and 3D printed some using his own transparent high-impact resin, making a cool set of clear-ish trucks. It’s a tough material, which we’ve featured on this site before.

Those trucks ended up in the hands of [Braille Skateboarding], who put them through their paces. The trucks are loose, but take a good beating around the park. Eventually one of the trucks succumbs after landing many kickfilps and ollies on the concrete.

Other great skate hacks include casting your own wheels in a 3D-printed mold. Video after the break.

Continue reading “3D Printed Skate Trucks Do Surprisingly Okay”

3-Wheeled Electric Skateboard Does Things Differently

Typically, electric skateboards drive one or more wheels with brushless motors, while keeping everything mounted on otherwise fairly-standard trucks to maintain maneuverability. However, [swedishFeetballs] decided to go a different route, building a 3-wheeled design using some interesting parts.

The build relies on a large combined hub motor and wheel, similar to those you would find on a hoverboard or some electric scooters; this one is a Xiaomi part sourced from eBay. It’s controlled via an off-the-shelf electric skateboard speed controller that comes complete with its own remote.

The hardware is all bolted up to a custom skateboard deck built from scratch to accept the large single rear wheel. Up front, a regular skateboard truck is used. Batteries are mounted under the deck. Reportedly, the board has a top speed of 15 mph, which unsurprisingly matches that of the Xiaomi M365 the hub motor is sourced from.

It’s a neat way to build an electric skateboard, and to be honest we couldn’t be more curious as to how it rides. Unfortunately, only a few seconds of footage is available, but we’ve embedded it below for your watching pleasure!

Meanwhile, you might also be curious as to the benefits of a half-track skateboard. Video after the break.

Continue reading “3-Wheeled Electric Skateboard Does Things Differently”

Borehole Camera Rig Makes Life Easier In Mining

Much of mining involves digging and drilling holes in the ground. Often, these holes need inspecting, but [Dean Harty] found that existing borehole inspection solutions weren’t up to snuff. Resolution was poor, and often live-view devices made recording footage a pain. Instead, he set about the development of the Sneaky Peaky, going through several revisions in the process.

The first revision was nothing more than a GoPro strapped to a small penny board, paired with a bright flashlight. The 4K resolution of the GoPro provided useful footage, and the assembly could be lowered into boreholes on a rope and retrieved easily. Rugged and water resistant, the gear worked well, and was remarkably cheap compared to more obscure mining industry hardware.

An early version of the Sneaky Peaky

Later revisions ditched the skateboard, replacing it with a pipe-style housing instead. Key to the design was that the device could readily be destroyed and flushed out of a borehole with an air blast in the event it got stuck.

Eventually, mining outfit Metrologi got involved, having worked with [Dean] on several borehole backfill operations. A 3D-printed chassis was developed to hold an action camera and twin torches, held together with plastic zip ties. These are attached to the pull rope, and if the camera becomes jammed, a sharp pull will snap the ties and cause the device to fall apart. Steel cable ties are then used to create flexible guides to center the assembly in a variety of pipe diameters.

It’s a great example of people on the ground hacking together the tools they need, combined with iterative design to integrate improvements over time. We don’t talk about boreholes much around here, but they can be musical if properly employed, as it turns out. If you’ve got your own great mining hacks, however, do drop us a line!

Casting Skateboard Wheels With A 3D Printed Mold

We’ll admit that most of the Hackaday staff wouldn’t get too far on a skateboard, but that doesn’t mean we can’t appreciate the impressive DIY wheels that [Chris McCann] has managed to cast using 3D printed molds. From unique color combinations to experimental materials, the process certainly opens up some interesting possibilities for those looking to truly customize their rides. Though it’s worth noting there’s a certain element of risk involved; should a set of homemade wheels fail at speed, it could go rather poorly for the rider.

Both the STL and STEP files for the mold have been released under the Creative Commons Attribution 4.0 license, meaning anyone with a 3D printer can follow along at home. Unfortunately, it’s not quite as simple as clicking print and coming back to a usable mold. Because of the layer lines inherent to FDM 3D printing, the inside of the mold needs to be thoroughly sanded and polished. [Chris] mentions that printing the mold in ABS and using vapor smoothing might be a workable alternative to elbow grease and PLA, but he hasn’t personally tried it yet.

Once you’ve got the three part mold printed, smoothed, and coated with an appropriate release agent like petroleum jelly, it’s time to make some wheels. The core of each wheel is actually 3D printed from PETG, which should give it pretty reasonable impact resistance. If you have access to a lathe, producing aluminum cores shouldn’t be too difficult either. With the core loaded into the mold, urethane resin is poured in through the top until all the empty space is filled.

But you’re not done yet. All those little air bubbles in the resin need to be dealt with before it cures. [Chris] puts his filled molds into a pressure chamber, though he mentions that vacuum degassing might also be a possibility depending on the urethane mixture used. After everything is solidified, the mold can easily be taken apart to reveal the newly cast wheel.

While there’s often some trial and error involved, 3D printing and resin casting are an undeniably powerful combination. If you can master the techniques involved, you can produce some very impressive parts that otherwise would be exceptionally difficult to produce on a hacker’s budget. Especially when you’re ready to start casting molten metal.

Continue reading “Casting Skateboard Wheels With A 3D Printed Mold”

Testing Carbon Fibre Reinforced Filament By Building An Over-Engineered Skateboard

Advances in filaments for FDM 3D printers have come in leaps and bounds over the past few years, and carbon fibre (CF) reinforced filament is becoming a common sight. Robotics extraordinaire [James Bruton] got his hands on some CF reinforced PLA, and ended up building a completely over-engineered 3D printed skateboard. (Video, embedded below.)

[James] started by printing some test pieces with a 0.5 mm and a big 1.2 mm nozzle with and without the CF, which he subjected to cantilever deflection tests. The piece with CF was 20% stiffer than without.

[James] then built an extremely strong and cool looking skateboard deck with alternating section of the CF PLA and toughened PLA, totalling 2.7 kg of filament. It was extremely strong, so after bolting on a set of trucks and wheels, he did some mild riding at a local skate park, where it survived without any problems. He admits it was completely over-engineered, but points out in that the internal cavities in the deck is the perfect place for batteries on an electric long board.

Designing something from the ground up with the strength and weaknesses 3D printing in mind, leads to some very interesting and innovative designs, of which this is a perfect example, and we hope to see many more like it. We’ve featured a number of [James]’ project, including the remote controlled bowling ball he built for [Mark Rober] and his impressive OpenDog and Start Wars robots.

Continue reading “Testing Carbon Fibre Reinforced Filament By Building An Over-Engineered Skateboard”