When Does Car Hacking Become “Tampering”? The British Government Seeks Guidance

When a government decides to take a look at your particular field of experimentation, it’s never necessarily a cause for rejoicing, as British motor vehicle enthusiasts are finding out through a UK Government consultation. Titled “Future of transport regulatory review: modernising vehicle standards“, the document explains that it is part of the process of re-adopting under UK law areas which have previously been governed by the European Union. Of particular interest is the section “Tackling tampering”, which promises a new set of offences for “tampering with a system, part or component of a vehicle intended or adapted to be used on a road“.

They go into detail as to the nature of the offences, which seem to relate to the production of devices designed to negate the safety or environmental features of the car. They’re at pains to say that they have no wish to target the legitimate car modification world, for example in motorsport or restoration, but it’s easy to see how a car hacker might inadvertently fall foul of any new rules. It’s worried the enthusiasts enough that a petition has been launched on the UK parliamentary petition site, making the point that the existing yearly MOT roadworthiness test should fulfill the function of taking any illegal vehicles off the road.

We’re always wary when governments wander into our purview, and given where this is being written it’s fair to say that British governments have had their fair share of ill-considered laws in their time. But before we call doom upon the future of car hacking for Brits, it’s worth remarking that they don’t always make a mess in this arena. The rules for the Individual Vehicle Approval test for putting a home-built car on the road are far from a bureaucratic nightmare for example, instead being a relatively sensible primer in building a safe motor vehicle.

So we’d suggest not to panic just yet, but perhaps any British readers might like to respond appropriately to the consultation and the petition in the interests of nudging them in the right direction.

Thanks [Adam Quantrill] for the tip.

Showing off the jet powered tesla

Tesla Model S Gets Boost With Jet Engine Upgrade

Tesla is well known for making cars that can accelerate quickly, but there’s always room for improvement. [Warped Perception] decided that his Tesla Model S P85D needed that little bit of extra oomph (despite the 0-60 MPH or 0-97 km/h time of 3.1 seconds), so he did what any sensible person would: add three jet turbines to the back of his car.

The best part of this particular build is the engineering and fabrication that made this happen. With over 200 pieces and almost all personally fabricated, this is a whirlwind of a build. The control panel is first, and there’s a particularly clever technique of 3D printing the lettering directly onto the control panel for the flat stuff. Then for the pieces with angles that would prevent the head from moving freely, he printed onto a plastic sheet in reverse, applied glue, then stuck the letters to the plate as a sheet. A top layer of clear coat ensures the letters won’t come off later.

Using a 3D printer to apply lettering on the control panel.

He installed the control electronics in the trunk with wiring strung from the car’s front to the rear. Three Arduinos serve as controllers for the jets. Afterward, came the bracket to hold the engines and attach it to the car’s underside. Unfortunately, supplies were a little hard to come by, so he had to make do with what was on hand. As a result it didn’t come out as strong as he would have hoped, but it’s still pretty impressive.

[Warped Perception] does a few tests before taking it out on the road. Then, he shifted the car into neutral and could drive the car solely on jet power, which was one of his goals. While we don’t love the idea of testing a jet engine on public roads, it certainly would discourage tailgaters.

Next, he finds a quieter road and does some speed tests. Unfortunately, it was drizzling, and the pavement was damp, putting a damper on his 0-60 standing times. Electric-only he gets 4.38 seconds, and turning on the jets plus electric shaves that down to 3.32 seconds. Overall, an incredible build that’s sure to draw a few curious glances whenever you’re out on the town.

If you’re looking to upgrade your Tesla, perhaps instead of jet engines, you might opt for a robot to plug it in for you?

Continue reading “Tesla Model S Gets Boost With Jet Engine Upgrade”

We All Live In A PVC Submarine

We doubt you could really live in [Pena’s] PVC submarine, but now the song’s stuck in our head anyway. Although the post is in Portuguese, you can get a pretty good idea of how it works, and translation software is better than ever. Transcending the language barrier, there are videos of just about every step of the construction. We didn’t, however, find a video of the vehicle in the water.

The plumber’s delight has modified motors for thrusters, and a camera as well. Epoxy potting keeps things waterproof. We’ve seen candle wax used for the same purpose in other builds.

Continue reading “We All Live In A PVC Submarine”

Build Your Own Submarine

If you are tried of building things that fly, why not try a submarine like [DIYPerks] did? As you can see in the video below, the key is to control buoyancy, and the mechanism used is impressive. The sub has two giant syringes fore and aft to compress or decompress water. The plungers are now 3D-printed actuators that travel on a lead screw. Two high-torque motors and some batteries sandwiched in acrylic disks make up the rest. This is a big vessel — you won’t be trying this in your bathtub and maybe not even your pool unless it is a big one.

Of course, everything needs to be watertight. Instead of trying to waterproof a power switch, this sub uses a reed switch so that a nearby magnet can turn it on. Not an original idea, but we always think it is more elegant than seals and potting compounds.

Continue reading “Build Your Own Submarine”

Rubber Tyres Before There Were Tyres

Sometimes there is pleasure in watching an expert demonstrating his craft, particularly so when the craft is unusual or disappearing. A video came our way of just such a thing, and it’s of a craft so rare that it’s possible few of us will have considered it. We’re used to buying tyres for our motor vehicles that come pre-made in a mould for the size of our wheels, but how many of us have considered where the origins of the rubber tyre lie? How did a 19th-century horse-drawn buggy get its tyres? [EngelsCoachShop] take us through the process, putting rubber on a set of wooden carriage wheels.

These wheels would originally have had iron rims, that must have provided a jarring ride on cobbled roads of the day. English coach-builders of the mid 19th century were the first to fit solid rubber tyres, and it’s this type of tyre that’s being fitted in the video. Instead of the rubber ring we might expect the tyre is cut from a length of vulcanised rubber extrusion with a significant overlap, then a pair of high-tensile wires are fed through holes in the extrusion. The impressive part is the jig for creating the tyre, in which the rubber is compressed to a tight fit on the wheel before the wires are cut and their ends brazed together. Once the wheel is released from the jigĀ  the compressed tyre expands to the point at which its ends meet, making a perfect circular tyre held tightly on the rim. Few of us will ever see this for real, but we’re privileged to see it on the screen.

We may not deal with wooden wheels very often, but this isn’t the first set we’ve seen.

Continue reading “Rubber Tyres Before There Were Tyres”

Abandoned Airplane Takes Off Again As Luxury RV

You remember how you wanted to combine everything as a kid? Like lions and tigers into ligers and so on? Well, some kids dream of transportation hybrids. For eighty-year-old [Gino Lucci], now an Air Force retiree, that dream involved a recreational vehicle that combined an airplane fuselage and a delivery truck.

There it was, rusting in a field outside Rolla, Missouri — the vintage plane that would start [Gino Lucci] on the path to fulfilling this dream. This project began when [Gino]’s son spotted the body of a 1943 Douglas R4D military transport aircraft.

Over the next year, [Gino] and his sons painstakingly fused the fuselage to the chassis of an International DuraStar 4400 medium-duty truck. We love how they went about it. [Gino] and the boys just kept putting the two together and cutting away the fuselage in stages until they got it right. After making it roadworthy, it took another two years to work out the kinks.

The Fabulous Flamingo is 38 feet (11.6 meters) long and stands 12.5 feet (3.81 meters) tall. But the best metric is the width. It’s unspecified, but is apparently half an inch (1.27 cm) under the definition of what is street legal in Michigan. They used the plane’s engine cowlings as fenders and got the mirrors off of a ’70s Ford pickup. Floor it past the break and check it out.

This build cost about $20,000 USD all told. If you’ve got that kind of money, you could instead stuff a powerful engine into a tiny plane to get your kicks.

Continue reading “Abandoned Airplane Takes Off Again As Luxury RV”

Surfboard Gets Jet Upgrades

Surfing is a fun and exciting sport but a lot of beginners can get discouraged with how little time is spent actually riding waves while learning. Not only are balance and wave selection critical skills that take time to learn, but a majority of time in the water is spent battling crashing waves to get out past the breakers. Many people have attempted to solve this problem through other means than willpower alone, and one of the latest attempts is [Andrew W] with a completely DIY surfboard with custom impeller jet drives.

The surfboard is hand-made by [Andrew W] himself using a few blocks of styrofoam glued together and then cut into a generic surfboard shape. After the rough shaping is done, he cuts out a huge hole in the back of the board for the jet drive. This drive is almost completely built by [Andrew] as well including the impeller pumps themselves which he designed and 3D printed. The pair of impellers are driven by some beefy motors and a robust speed controller that connects wirelessly to a handheld waterproof throttle to hold while surfing. Once everything was secured in the motor box the surfboard was given a final shaping and then glassed. The final touch was an emergency disconnect attached to a leash so that if he falls off the board it doesn’t speed away without him.

The build is impressive not only for [Andrew]’s shaping skills but for his dedication to a custom jet drive for the surfboard. He spent over a year refining the build and actually encourages people not to do this as he thinks it took too much time and effort, but we’re going to have to disagree with him there. Even if you want to try to build something a lot simpler, builds like these look like a lot of fun once they’re finished. The build seems flawless and while he only tested it in a lake we’re excited to see if it holds up surfing real waves in an ocean.

Continue reading “Surfboard Gets Jet Upgrades”