If you’re a gamer, lag is one of your worst enemies. But what would it be like if you experienced lag in real life? Imagine how frustrating that would be!
Introducing Living With Lag — a cute experiment put on by an internet provider called Ume. Using an Oculus Rift development kit, a Raspberry Pi, noise cancelling headphones and a webcam, Ume’s thrown together a fun social experiment. The webcam captures both audio and video and repeats it to the Oculus Rift via the Pi at a variable delay to show the effects of slow internet speeds.
They attempt four different scenarios. Ping pong is pretty much impossible. Dance class is just embarrassing. And attempting to cook or eat is absolutely hilarious. They even try bowling, which also proves more difficult than you could imagine!
It’s a project by Bristol Interaction and Graphics group of the University of Bristol, and it’s an interesting twist on 3D projection. They’ve created what they call the MisTable which features a smoke machine, “smoke screens”, and three projectors. What it results in is an interactive table for two people. The tabletop surface is a display, as is the see through fog in front of each person (the “fog screens”).
While it is fairly easy to understand and explain, there’s a handy diagram after the following break showing how the system works. Our question is, when are one of you guys or gals going to try making one?
Facebook has agreed to purchase Oculus VR. The press values the deal at about $2 Billion USD in cash and stock. This is great news for Oculus’ investors. The rest of the world has a decidedly different opinion. [Notch], the outspoken creator of Minecraft, was quick to tweet that a possible rift port has now been canceled, as Facebook creeps him out. He followed this up with a blog post.
I did not chip in ten grand to seed a first investment round to build value for a Facebook acquisition.
Here at Hackaday, we’ve been waiting a long time for affordable virtual reality. We’ve followed Oculus since the early days, all the way up through the recent open source hardware release of their latency tester. Our early opinion on the buyout is not very positive. Facebook isn’t exactly known for contributions to open source software or hardware, nor are they held in high regard for standardization in their games API. Only time will tell what this deal really means for the Rift.
The news isn’t all dark though. While Oculus VR has been a major catalyst for virtual reality displays, there are other players. We’ve got our eggs in the castAR basket. [Jeri, Rick] and the rest of the Technical Illusions crew have been producing some great demos while preparing CastAR for manufacture. Sony is also preparing Project Morpheus. The VR ball is rolling. We just hope it keeps on rolling – right into our living rooms.
Remember the days when the future was console cowboys running around cyberspace trying to fry each other’s brains out? MIT Media Lab remembers too. They have a class called MAS S65: Science Fiction to Science Fabrication in which students are trying to create hardware inspired by technology imagined in the works of legendary Speculative Fiction writers such as William Gibson, Neal Stephenson and many others. They happened to be at SXSW this year showing off some of the projects their students have been working on. Since we were around, we thought we should pay them a little visit. Fifteen minutes later it was clear why working at Media Lab is a dream for so many hackers/makers out there.
Jon Ferguson from Media Lab showed us a prototype of a game called Case and Molly, inspired by scenes in Neuromancer in which Case helps Molly navigate, by observing the world through vision-enhancing lenses sealed in her eye sockets. OK, they haven’t really build surgically-attached internet-connected lenses (yet.. we’re certain[Ben Krasnow] is working on it), but they have built a very cool snap-on 3D vision mechanism that attaches to the built-in iPhone camera. Add a little bit of live video streaming, a person with Oculus Rift and a game controller and you can party like it’s 1984.
Another interesting project is called “Mandala : I am building E14” and it uses data collected from a sensor network in MIT E14 in order to provide a view of the universe from the standpoint of a single building. It tries to address the old “what if buildings could talk?” question by visualizing the paths of people walking around the building and providing an overall sense of activity in different areas. It is also a pretty good demonstration of all the creepy things that are yet to be built using all the ‘connected devices’ coming our way.
It gets better. The Sensory Fiction project is a special book that comes with a vest which enhances the reader’s experience by providing stimulation that causes the reader to experience the same kind of physiological emotions as the characters in the book. The wearable that you have to put on supports a whole bunch of outputs: light, sound, temperature, pressure and vibration that can influence your heart rate. It is very easy to imagine so many potential ‘creative’ abuses of such a device.
Another Neuromancer-inspired piece, called LIMBO (Limbs In Motion By Others) allows synchronization of hand gestures between multiple ‘users’ over a network using a special electric muscle stimulation rig. The result is a sort of ‘meat puppet’ – one person’s hand being forced to match movement of the other. Devious ideas aside, it has great potential in helping paraplegic control their muscle movement using eye tracking.
Finally, a more cheerful project called BubbleSynth demonstrates an open computer vision/sound synthesis platform using physical processes as input to granular synthesis. The current installation is based on a bubble generating machine and motion tracking as a trigger for a modular synthesizer resulting in beautiful ambient sounds. The audio part of the platform is based on SuperCollider and is completely customizable. The next iteration of the project will be using movement of a species of bacteria in order to generate the music. Why struggle learning how to play an instrument? We’ll get bacteria do all the work.
Feel like building something similar? Hackaday’s current Sci-Fi contest is a perfect excuse. Need inspiration? Check out the syllabus for the MIT SciFi2SciFab class!
Moving around in space is one of the major hurdles in virtual reality. A holodeck wouldn’t be much fun if you kept walking into walls. [Gamnaught] is working on a simple solution to this complex problem with his budget omnidirectional treadmill. Omnidirectional treadmills have been around in various forms for a number of years. The idea behind them simple: allow a person walk in any direction without actually changing their position. This is a bit different from the unidirectional treadmill models found at the local gym. Some very complex solutions have been used to create omnidirectional treadmills, including multiple motors and computer control systems as can be found in the US Army omnidirectional treadmill. [Gamnaught] kept it simple. He built a circular 2×4 platform 13-15 degree bowl. The bowl is covered with carpet, and the user wears furniture sliders on their shoes. The low friction of the sliders allows the user to walk, run, and even walk backwards on the platform. Bungie cords provide resistance so the user doesn’t walk off the platform.
The early results look promising. [Gamnaught] says the balance felt a bit weird at times and took some getting used to. Anyone who has spent time with the Oculus Rift or other VR systems will tell you – many aspects of virtual reality take some getting used to. The treadmill is still open loop, however [Gamnaught] hopes to add motion tracking with a Sixense STEM system. We think a OpenCV based system would work as well. We’ve also seen carpet sliders sold as a children’s toy to be strapped over regular sneakers. Going the toy route would avoid needing a dedicated pair of footwear for the treadmill. More build information can be found on [Gamnaught’s] Reddit threadon the topic.
No good at pool? Never fear, Cassapa is here! [Alex Porto] has created an augmented reality system for playing pool, and it means almost anyone can make those cool trick shots!
Ca-what? Cassapa (“caçapa”) is a Portuguese word for pool table pocket. The software works by placing a webcam directly above the pool table for image recognition. Dedicated software interprets the image and identifies the position of the holes, borders, balls and the cue which can then be used to calculate game physics. A projector then projects the forecast physics and allows you to make tiny adjustments — updated in real-time — to make the perfect shot.
Unfortunately, having a big projector shining down on your pool table won’t exactly make anyone believe you’re actually good at pool. Although if you could combine this with Google Glass or any other vision augmenting goggles… that would be pretty cool. Well, you’d still be terribly dishonest and a cheater — but anyway, take a look at the video after the break.
The HackPhx Winter 2014 hackathon was held at Heatsync Labs hackerspace in Mesa, Arizona, USA. The advertised theme was “Arduino Wearables”. Participating attendees were randomly placed on teams evenly distributed by their disclosed skills across all teams. There were 10 teams with 4 to 5 members per team competing for two winning spots.
Each team had to build an amazing wearable project utilizing the secret ingredient which was Seedstudio’s Arduino-compatible Xadow wearable platform and add-ons. The Xadow is similar to the Arduino Leonardo and participants used an Arduino cross compatibility and pin mapping chart to assist in development.
Top prize was the Judges’ prizes for the best completed and documented Xadow wearable team project. The second prize was the Jury’s prize given to the team project that the other teams liked the most regardless of event criteria.
Read more about the winning teams and watch their presentations after the break.