Hoverboard Rides On Eddy Currents

The famous hoverboards of Back to the Future haven’t quite gotten here yet, but that hasn’t stopped anyone with a unique personal vehicle from using the name any time they need some quick marketing. The self-balancing scooter trend of the mid-2010s was the best example of this in recent memory, but there are also water-propelled platforms that use the popular name as well as a myriad of other more skateboard-like devices that never got off the ground at all. This project from [Damien Dolata], on the other hand, might be the most authentic prototype we’ve seen compared against the fictional version presented in the movie.

The hoverboard uses a set of rotating magnets, referred to in this build as magneto-rotational repulsors, which spin up to an extremely high rotational speed underneath the board. When above a metal surface, the spinning magnets generate eddy currents in the metal beneath them which create the strong magnetic field needed to levitate the board. Unlike the Lexus hoverboard system which used supercooling magnets, this is a much more affordable way of producing magnetic fields but is a little bit more complicated due to the extra moving parts.

As this is still in the prototyping stages, it has only been able to lift around 30 kg and hasn’t been tested in motion yet, but there are two small turbines built into the hoverboard to generate thrust whenever [Damien] gets to that point. It would require a larger metal surface to move across as well, which might be the main reason why it hasn’t been tested this way yet. For any native French speakers taking a look at this project, be sure to fill in any of our gaps in the comments below, and for other ways that eddy currents have been used in transportation take a look at this bicycle that uses them in its drivetrain.

Continue reading “Hoverboard Rides On Eddy Currents”

A Rail Cart For The Space Conscious Passenger

For those who live in countries where there are plenty of abandoned railways, a popular way to explore them has been by means of home made rail carts. These are usually rudimentary rail trolleys with a small internal combustion engine, and a host of fascinating videos of them can be found online. Such a trolley has one disadvantage though — it’s not the most compact of devices. [Cato] has come up with a rail cart that’s extremely portable by replacing the engine with the guts of a pair of hoverboards.

The chassis of the machine is made from aluminium extrusion, and its deck from plywood. The wheels are the stock hoverboard wheels with flat flanges applied, which while they don’t have the ideal flange profile of a rail wheel are good enough to keep the thing on track. Finally to control the thing a rather stylish little 3D printed single-axis joystick serves as a combined throttle and brake.

Those of us who hail from places where abandoned railways have their track speedily ripped up can only gaze in envy and imagine speeding along the rails on one of these. The build starts with a warning never to use one of these on an active track, but should you wish to drive a real train there are plenty of places to do that.

Mahmut's kid in a helmet, riding the go-kart outside on pavement

Hoverboard Go-Kart Build Is A Delight To Watch

Hoverboards have been an indispensable material for hackers building their own vehicles in the last few years. [Mahmut Demir] shows how he’s built a hoverboard-powered go-kart for his son. Unable to hack the board’s firmware, he instead set out to reuse the hoverboard without any disassembly, integrating it into the go-kart’s frame as-is. This build is completely mechanical, distinguished in its simplicity – and the accompanying six minute video shows it all.

This go-kart’s frame is wood and quite well-built, with the kind of personal touch that one would expect from a father-son gift. Building the vehicle’s nose out of a trashcan gave us a chuckle and earned bonus points for frugality, and the smiley face-shaped wheel is a lovely detail. As for the ‘hoverboard reuse’ part, the board is pivoted backward and forward, just as it normally would be. Rather than feet, the kart uses a lever that’s driven with two pedals through a pulley-string arrangement, giving granular speed control and the ability to reverse. It’s a clever system, in fact we don’t know if we could’ve done it better. You can see [Mahmut]’s son wandering in the background as [Mahmut] goes through the assembly steps — no doubt, having fun doing his own part in the build process.

[Mahmut] tells us he’s also added a remote off switch as a safety feature, and we appreciate that. We’ve seen hoverboards in go-kart builds before, as well as rovers, e-bikes, robot vehicles, and even mobility platforms. Truly, the hoverboard is a unicorn of hacker transportation helpers.
Continue reading “Hoverboard Go-Kart Build Is A Delight To Watch”

Hackaday Prize 2022: A Hefty Hoverboard Rover

Popular consumer products often become the basis of many hacker projects, and hoverboards are a good example of this. [Tanguy] is using the drivetrain from a pair of hoverboards to build a beefy little rover platform with independent suspension.

Since hoverboards were designed to move around fully grown humans, the motors have the torque to spare for this 25 kilogram (55 pound) rover. For rough terrain, each of the four motor/wheel combos is mounted to arms bolted together with 3D printed parts and thick laser-cut aluminum. Suspension is simple and consists of a couple of loops of bungee cord. The chassis uses aluminum extrusion bolted together with aluminum plates and more printed fittings.

It doesn’t look like the rover is running yet, but [Tanguy] intends to power it with an electric scooter battery and control it with his own Universal Robot Remote. He also added an E-stop to the top and a cheap indoor PTZ camera for FPV. We look forward to seeing the functional rover and how it handles terrain.

We’ve seen hoverboard motors get used in other rover projects, but also for scootersskateboards, and even a hydroelectric turbine. It’s also possible to use them as is by mounting them to existing chassis’ to create electric carts.

Continue reading “Hackaday Prize 2022: A Hefty Hoverboard Rover”

Hoverboard Powered Sofa Is Fun And A Bit Dangerous

Discarded hoverboards are a great source of free high torque motors for hacking. This can include crazy but fun projects like this hoverboard-driven IKEA sofa, as demonstrated by [Bitluni] and his friends at xHain Hackerspace in Berlin.

With a couple of dead hoverboards in various conditions and a working e-bike battery, the group started exploring different options to put together a usable drivetrain. The first attempt involved commanding the motor drivers directly by intercepting communication from the gyro-based controller. The 9-bit communication protocol was a tough nut to crack, so they tried (and failed) to use the gyro-boards directly as the controllers. In the process of researching they discovered someone had created alternative firmware for the hoverboard controllers to allow control with a Wii Nunchuck. There is even a web-based config tool for compiling the firmware.

With some wood spacers screwed to the bottom of the sofa, the hoverboard motors could be attached by simply screwing their enclosure to the bottom of the couch and adding a section of PVC pipe between the halves for wiring. Caster wheels were added to the rear corners of the sofa to complete the chassis. The motors were very sensitive to control inputs on the Nunchuck, so riding the couch tended to rapidly turn into a rodeo event. The couch also wasn’t made to carry its load on the outer corners, so it had to be reinforced with plywood after it started cracking.

We’ve seen plenty of hacks that involve hoverboard motors, including an electric skateboard with mecanum wheels and a surprisingly practical e-bike conversion.

Continue reading “Hoverboard Powered Sofa Is Fun And A Bit Dangerous”

Hoverbike Turns Hoverboard Into Ebike

Hoverboards were a popular trend with the youths and in-crowd a few years ago, and now that the fad has largely died out there are plenty of them sitting unused in closets and basements around the world. That only means opportunities to put the parts from these unique transportation devices into other builds. A more practical method of transportation is a bicycle, and this build scavenges most of the parts from a hoverboard to turn a regular bicycle into a zippy ebike.

This bike build starts with a mountain bike frame and the parts from the hoverboard are added to it piece by piece. The two motors are mounted to the frame and drive the front chain ring of the bike, allowing it to still take advantage of the bike’s geared drivetrain. Battery packs from two hoverboards were combined into a single battery which give the bike a modest 6-10 km of range depending on use. But the real gem of this build is taking the gyroscopic controller board from the hoverboards and converting it, with the help of an Arduino Due, to an ebike controller.

Eventually a battery pack will be added to give the bike a more comfortable range, but for now we appreciate the ingenuity that it took to adapt the controller from the hoverboard into an ebike controller complete with throttle and pedal assist. For other household objects turned into ebikes, be sure to check out one of our favorites based on a washing machine motor: the Spin Cycle.

From Hoverboard To Scooter

I’m sure anyone who had seen Back To The Future was more than a little disappointed when “hoverboards” started appearing on the scene. They didn’t float and they looked fairly ridiculous for anyone over 12. But they have the huge advantage of being cheap and easy to find. [Made By Madman] breaks down a hoverboard for parts to make an incredible custom electric scooter.

The first step after breaking things down for parts was to break the wheel hub motors. He pulled out the axle and started machining a new one using the lathe and a milling machine. A quick temper later, he had a sturdy steel axle. An adapter for a disc brake was milled that could attach to the wheel. The TIG welder came out to weld up a box out of some aluminum to hold the electronics. The wheel had a bracket welded on with a spring shock absorber to help smooth the ride. The fork was machined on the lathe and belt sander, but actual shocks came from an old bicycle. To attach the fork to the frame, [Madman] bends a piece of bar stock into shape; like a madman. The handlebars were taken from the bicycle and the fork was extended up to an adult height.

A quick test ride in the alley showed that the back shock wasn’t strong enough, so he swapped it with a strong one. All the parts got a powder coat. Electronics wise, it has a standard speed controller and a custom battery made from 18650 cells wired up in a 13s6p configuration and bundled together into a package. After a significant amount of wiring, he took it for a test drove and we love seeing him zip around the streets in the snow.

So many parts here are machined to press-fit tolerances and then welded on. The skill, videography, and effort that went into this were just incredible. If you’re feeling inspired and don’t have a lathe on hand, perhaps this 3d printed scooter might be a bit more your speed. Video after the break.

Continue reading “From Hoverboard To Scooter”