A Blinky Fedora To Ring In The New Year

[Garrett Mace] decided to dress festive for New Year’s Eve. What he came up with is a fedora ringed in LEDs that react to music. The hardware uses 5050 LEDs on strips. Three of them encircle the head-gear providing a total of 114 RGB pixels. Each is a WS2811 module — a part which we’re seeing more and more of lately.

The video clip after the break starts off with a few minutes of demonstration. [Garrett] managed to code all kinds of animations for the hardware including several different styles of color sweeps and fades. You may start to think that the three bands always display the same patterns but keep watching and you’ll see a sparkle pattern that proves each dot can be addressed individually.

About 2:20 seconds into the video [Garrett] explains how he pulled it off and shows off the driver hardware. The strips are glued to a band of webbing that slides over the hat. The wires that drive the lights were fed through the center of some paracord and connect to an Arduino housed in a 3D printed case. Power is provided by a portable USB battery with a ShiftBrite shield and an MSGEQ7 chip complete the parts list.

Continue reading “A Blinky Fedora To Ring In The New Year”

Tie Tack Sends Morse Code Seasons Greetings

morse-code-tie-tack

For [Davide Gironi] made a holiday tie tack this year. It’s not made to look like Santa Claus, Frosty, or a Christmas tree. He simply wishes you a Merry Christmas (‘Buon Natale’ in Italian) by flashing the message in Morse code.

Two LEDs have been added to a plain tie tack. It is tethered to the logic circuitry that provides power and drives the red and blue lights accordingly. As you can see in the video after the break, red signifies the end of a letter, and long or short blue flashes correspond to dashes or dots. This doesn’t require much horsepower so he’s gone with an 8-pin ATtiny13 microcontroller (you might be able to find one of these in a light bulb if you look hard enough). The rest of the equipment includes a few resistors, a push button, and a coin cell for power. [Davide] uses a byte-packing technique he learned from a different project to store each letter as an 8-bit packet which means there’s plenty of room to store your message in the chip’s memory.

Continue reading “Tie Tack Sends Morse Code Seasons Greetings”

Color Changing Bag Matches Clothing Color, Tells You What’s Inside

color-changing-shoulder-bag

Adding some lights to your everyday items will certainly give you a style leaning toward the world of Blade Runner. But if you can add functionality to control the blinky components you’ve actually got something. A great example of this is [Kathryn McElroy’s] Chameleon Bag. It’s a shoulder bag with a light-up flap. It can color match your clothing, but she also built some features that will let you know what is inside of the bag.

The project started by using a cardboard template in the size and shape of the bag’s flap. After adding an Arduino to control the LEDs and an RFID reader for an interactive element she sewed a replacement flap that also acts as a diffuser. In the video after the break she demonstrates matching the color of her scarf by reading a tag sewn in the end of it. She then starts loading up all the stuff needed for a day away from home. As the keys, phone, and computer are placed in the bag their tags are read, resulting in different combinations of color. Once everything she needs is inside, the flap turns green and she heads out the door.

This will go great with your illuminated umbrella.

Continue reading “Color Changing Bag Matches Clothing Color, Tells You What’s Inside”

We Are The Borg. We Will Add Heat And Distance Sensing To Your Vision.

we-are-borg

[Gregory McRoberts] was born with reduced vision in one eye and has never experienced the three dimensional sight which most of us take for granted. Recently he was inspired by the concept of a hearing aid to build a device which can augment his vision. Behold, the very Borg-like eye-patch that he wears to add distance and heat to his palette of senses.

The hardware he chose is an Arduino-compatible Lilypad board. It is wired to an ultrasonic rangefinder and an infrared sensor which monitor the area in front of him. The function of his right eye is still capable of seeing light and color, so a pair of LED boards are mounted on the inside. One is connected to the thermal sensor, displaying blue when below eighty degrees Fahrenheit and red when above. The other LED is green and flashes at a different speed based on the range sensor’s reading.

This is distracting when a person with normal sight wears it because of the intensity of the LEDs. We found [Gregory’s] explanation of this (called Helmet Fire) quite interesting.

[via Adafruit]

Turning 3D Shutter Glasses Into Automatic Sunglasses

[Dino’s] hack this week seeks to create sunglasses that dim based on the intensity of ambient light. The thought is that this should give you the best light level even with changing brightness like when the sun goes behind a cloud or walking from inside to outside. He started with a pair of 3D shutter glasses. These have lenses that are each a liquid crystal pane. The glasses monitor an IR signal coming from a 3D TV, then alternately black out the lenses so that each eye is seeing a different frame of video to create the stereoscopic effect. In the video after the break he tears down the hardware and builds it back up with his own ambient light sensor circuit.

It only takes 6V to immediately darken one of the LCD panes. The interesting thing is that it takes a few seconds for them to become clear again. It turns out you need to bleed off the voltage in the pane using a resistor in order to have a fast response in both directions. Above you can see the light dependent resistor in the bridge of the frame that is used to trigger the panes. [Dino] shows at the end of his video that they work. But the main protective feature of sunglasses is that they filter out UV rays and he’s not sure if these have any ability to do that or not.

Continue reading “Turning 3D Shutter Glasses Into Automatic Sunglasses”

A Wearable Pipboy 3000

[Zachariah Perry] builds a lot of replica props, and judging from the first few offerings on his blog he’s quite good at it. We enjoyed looking in on the Captain America shield and Zelda treasure chest (complete with music, lights, and floating heart container). But his most recent offering is the wearable and (kind of) working Pipboy 3000 from the Fallout series.

From his description in the video after the break it sounds like the case itself came as a promotional item that was part of a special edition of the game. He’s done a lot to make it functional though. The first thing to notice is the screen. It’s domed like the surface of a CRT, but there’s obviously not enough room for that kind of thing. The dome is made from the lens taken out of a slide viewer. It sits atop the screen of a digital picture frame. [Zachariah] loaded still images from the game into the frame’s memory, routing its buttons to those on the Pipboy. He also added a 12 position rotary switch which toggles between the lights at the bottom of the screen.

A little over a year ago we saw a more or less fully functional Pipboy. But that included so many added parts it was no longer wearable.

Continue reading “A Wearable Pipboy 3000”

The Wedding Band: Milling Titanium And Wrapping It In Palladium

You’ve got to admit that custom milling your own wedding band is pretty hard-core. In this case [Jeremy Swerdlow] is making it for his friend, but that doesn’t diminish the fun of the project. After the break you can watch him mill a titanium ring and wrap it with a palladium inlay.

To solder palladium to titanium [Jeremy] would need special equipment, so he found another way to mate the dissimilar metals. He milled a dovetail groove in the center of the titanium band. To do that, he had to make a special cutting tool that was just the right size. Once had milled the ring’s rough dimensions, he had to fabricate a custom mandrel to hold the ring for the rest of the job. The dovetail was then filled with a palladium strip using a combination of heat and hammering. The two ends are soldered together using palladium solder. The ring in the middle shows this solder joint. To the right is a ring after the inlay is milled flush but before the final polishing which will bring out the best qualities of both metals.

If you don’t have the machine shop skills to pull this off you could always try your hand at 3d printed rings.

Continue reading “The Wedding Band: Milling Titanium And Wrapping It In Palladium”