Get Tangled Up In EL Wire With Freaklabs

[Akiba] over at Freaklabs has been working with electroluminescent (EL) wire.  An entire dance company worth! We know [Akiba] from his post tsunami radiation monitoring work with the Tokyo Hackerspace. Today he’s one of the engineers for Wrecking Crew Orchestra, the dance company that put on the viral “Tron Dance” last year. Wrecking Crew Orchestra just recently put on a new production called Cosmic Beat. Cosmic Beat takes Wrecking Crew’s performances to a whole new level by adding stage projection mapping and powerful lasers, along with Iron Man repulsor style hand mounted LEDs.

As one might expect, the EL wire costumes are controlled by a computer, which keeps all the performers lighting effects in perfect time. That’s where [Akiba] came in. The modern theater is awash in a sea of RF noise. Kilowatts of lighting are controlled by triacs which throw out tremendous amounts of noise. Strobes and camera flashes, along with an entire audience carrying cell phones and WiFi devices only add to this. RF noise or not, the show must go on, and The EL costumes and LEDs have to work. To that end, [Akiba] He also created new transmitters for the group. He also changed  the lighting booth mounted transmitter antenna from an omnidirectional whip to a directional Yagi.

The EL wire itself turned out to be a bit of a problem. The wire wasn’t quite bright enough. Doubling up on the wire would be difficult, as the dancers are already wearing 25 meters of wire in addition to the control electronics. Sometimes best engineering practices have to give way to art, so [Akiba] had to overdrive the strings. This means that wires burn out often. The dance troupe has gotten very good at changing out strands of wire during and between shows. If you want a closer look, there are plenty of pictures available on [Akiba’s] flickr stream.

Continue reading “Get Tangled Up In EL Wire With Freaklabs”

SkyJack: A Drone To Hack All Drones

Quadcopters are gradually becoming more affordable and thus more popular; we expect more kids will unwrap a prefab drone this holiday season than any year prior. [Samy’s] got plans for the drone-filled future. He could soon be the proud new owner of his own personal army now that he’s built a drone that assimilates others under his control.

The build uses a Parrot AR.Drone 2.0 to fly around with an attached Raspberry Pi, which uses everybody’s favorite Alfa adapter to poke around in promiscuous mode. If the SkyJack detects an IEEE-registered MAC address assigned to Parrot, aircrack-ng leaps into action sending deauthentication requests to the target drone, then attempts to take over control while the original owner is reconnecting. Any successfully lassoed drone doesn’t just fall out of the sky, though. [Samy] uses node-ar-drone to immediately send new instructions to the slave.

You can find all his code on GitHub, but make sure you see the video below, which gives a thorough overview and a brief demonstration. There are also a few other builds that strap a Raspberry Pi onto a quadcopter worth checking out; they could provide you with the inspiration you need to take to the skies.

Continue reading “SkyJack: A Drone To Hack All Drones”

Turning A Pi Into An IBeacon

beacon

Nowadays, if you want to ‘check in with Foursquare’ at your local laundromat, deli, or gas station, you need to take out your phone and manually ‘check in with Foursquare’. It’s like we’re living in the stone age. iBeacon, Apple’s NFC competitor that operates over Bluetooth 4.0 changes all that. iBeacon can automatically notify both iOS and Android users of where they are. [Kevin Townsend] over at Adafruit came up with a tutorial that turns a Raspberry Pi into an iBeacon, perfect for telling you that you’re somewhere in the proximity of a Raspberry Pi, and some other cool stuff too.

The iBeacon protocol is actually very simple. Basically, the only thing the iBeacon transmits is a 128-bit company/entity value, and an optional major and minor values (to differentiate between locations and nodes within locations, respectively). After plugging in a Bluetooth 4.0 USB dongle into the Pi, it’s a simple matter of installing BlueZ and entering the iBeacon data.

iBeacon by itself doesn’t really do anything – the heavy lifting of figuring out exactly which Panera Bread or Starbucks you’re in is left to the apps on your phone. If you’re a mobile developer, though, this is a great way to set up a very useful testing rig.

A Low-Cost Modular High Altitude Balloon Tracker With Mesh Networked Sensors

[Ethan] just tipped us about a project he and a few colleagues worked on last year for their senior design project. It’s a low-cost open hardware/software high altitude balloon tracker with sensors that form a mesh network with a master node. The latter (shown above) includes an ATmega644, an onboard GPS module (NEO-6M), a micro SD card slot, a 300mW APRS (144.39MHz) transmitter and finally headers to plug an XBee radio. This platform is therefore in charge of getting wireless data from the slave platforms, storing it in the uSD card while transmitting the balloon position via APRS along with other data. It’s interesting to note that to keep the design low-cost, they chose a relatively cheap analog radio module ($~40) and hacked together AFSK modulation of their output signal with hardware PWM outputs and a sine-wave lookup table.

The slave nodes are composed of ‘slave motherboards’ on which can be plugged several daughter-boards: geiger counters, atmospheric sensors, camera control/accelerometer boards. If you want to build your own system, be sure to check out this page which includes all the necessary instructions and resources.

An Awesome Wireless Motion Sensor

Wireless sensor networks are nothing new to Hackaday, but [Felix]’s wireless PIR sensor node is something else entirely. Rarely do we see something so well put together that’s also so well designed for mass production.

For his sensor, [Felix] is using a Moteino, a very tiny Arduino compatible board with solder pads for an RFM12B and RFM69 radio transceivers. These very inexpensive radios – about $4 each – are able to transmit about half a kilometer at 38.4 kbps, an impressive amount of bandwidth and an exceptional range for a very inexpensive system.

The important bit on this wireless sensor, the PIR sensor, connects with three pins – power, ground, and out. When the PIR sensor sees something it transmits a code the base station where the ‘motion’ alert message is displayed.

The entire device is powered by a 9V battery and stuffed inside a beautiful acrylic case. With everything, each sensor node should cost about $15; very cheap for something that if built by a proper security system company would cost much, much more.

A DIY NFC Tag

[Nicholas] built a simple NFC tag using an ATtiny84 microcontroller, four resistors, three capacitors, a diode, and an antenna. It implements ISO 14443-3, a standard for identification cards, and can communicate with the NFC chip sets found in most new smartphones.

This standard uses on-off keying for communication, which makes the hardware slightly more complex than the AVR RFID tag that we saw a few years back. The antenna and a variable capacitor form an LC circuit tuned at 13.56 MHz, which is the carrier frequency for the protocol. The diode acts as an envelope detector, letting the microcontroller recover the signal.

It may not be fully compliant with the standard, but [Nicolas] successfully tested out the device with his Lumia 620 phone. The firmware is available on Google Code so you can program your own tag data into main.c, build the firmware, and send some NFC packets. You can also check out a demo of the device after the break.

Continue reading “A DIY NFC Tag”

RFID Reader Snoops Cards From 3 Feet Away

Security researcher [Fran Brown] sent us this tip about his Tastic RFID Thief, which can stealthily snag the information off an RFID card at long range. If you’ve worked with passive RFID before, you know that most readers only work within inches of the card. In [Fran’s] DEFCON talk this summer he calls it the “ass-grabbing method” of trying to get a hidden antenna close enough to a target’s wallet.

His solution takes an off-the-shelf high-powered reader, (such as the HID MaxiProx 5375), and makes it amazingly portable by embedding 12 AA batteries and a custom PCB using an Arduino Nano to interpret the reader’s output. When the reader sees a nearby card, the information is parsed through the Nano and the data is both sent to an LCD screen and stored to a .txt file on a removable microSD card for later retrieval.

There are two short videos after the break: a demonstration of the Tastic RFID Thief and a quick look at its guts. If you’re considering reproducing this tool and you’re picking your jaw off the floor over the price of the reader, you can always try building your own…

Continue reading “RFID Reader Snoops Cards From 3 Feet Away”