Hackaday Prize Entry: WiFi Game Boy Cartridge

[DaveDarko] has entered a unique project into this years Hackaday Prize a WiFi Game Boy Cartridge. If you are active over at Hackaday.io I’m sure you’ll have run across Dave at some point or other, maybe we need to start charging him rent.

The aim of this project is to create a WiFi enabled Game Boy cartridge using an ESP32 which would then enable the user to do a number of different things. For example, it could be used as a portable war driving device. You could drive around scanning local WiFi networks all from the comfort of a classic Game Boy bringing back fond memories of your childhood.

This WiFi Game Boy cartridge may even be capable of some extremely light web browsing or be used as a unique controller for all your Internet connected things. Either way this project looks promising, We look forward to seeing how this progresses in the coming months.

Hackaday Prize Entry: A Femtocell Repeater

For a Hackaday Prize entry, [TegwynTwmffat] is building a cell phone signal repeater. This sort of device is commercially available, but the options are either expensive or, as with some units available for $30 on DealExtreme, obviously noncompliant with RF regulations. This project intends to create a cost-effective, hackable device that works properly and conforms to the right regulations.

The core of this system is a LimeSDR transceiver. This is a board we’ve seen before, and it has a few interesting features. Basically, the core of the LimeSDR is a programmable RF transceiver with coverage from 100kHz to 3.8GHz. There’s also on-chip signal processing and USB 3.0 bandwidth to get the signals to and from a computer.

Right now, [TegwynTwmffat]’s focus is getting his LimeSDR up and working and figuring out how to set up a few radio blocks to do what is needed. There’s a great update to the project that showcases Pothos, and so far [Tegwyn] has a full-duplex repeater working. This is great work, and really showcases the capabilities of what software-defined radio can do.

From Amritsar To Busselton; More World Create Day Stories

A few weeks ago, we took Hackaday IRL and into hackerspaces around the globe. This was World Create Day, a community effort to come together and build something that matters. Think of it as the pre-game for the Hackaday Prize, our online competition to change the world by building hardware. The groups at these hacker meetups have sent in pictures and reported on what they created. What happened during this worldwide hacker meetup? So much awesome stuff.

The SupplyFrame Design Lab

Did you know Hackaday has its own Hackerspace? It’s true! We have an eight-foot ShopBot, a Tormach, we just got a rig to do injection molding, and apparently, the intern is busy setting up a resin printer.

There are a ton of really talented people associated with the Design Lab, and they were out in full force on World Create Day. [Diego] from Deezmaker has been working on robot muscles and customizable linear actuators for a while, so that was obviously the focus of his World Create Day. Everyone needs mirrored LED-equipped welding/steampunk goggles, so that was [Rich Cameron]’s build, pictured to the right.

A fabulous time was had by all, but just because this was only one of three World Create Day meetups hosted ‘officially’ by Hackaday doesn’t mean it was the biggest or the best. There was plenty of fun the world over.

Amritsar, India

World Create Day is a worldwide event, so of course we had a few events in the second most populous country on Earth. [Inderpreet], [Shubham], [Simrat], and [Navjeet] put together a World Create Day event at the Department of Electronics Technology at GNDU Amritsar, their local university. A slew of people showed up, [Inderpreet] gave a talk on The Hackaday Prize, and much fun was had by all.

FabLab San Diego

The Fab Lab in San Diego also hosted a World Create Day event, Projects that made the cut included a real time, IRL closed captioning device. Think of this one as a universal translator, but only one language, with a screen. Or a voice to text thing running on a phone. Either way. Other ideas included an improved mobility cart, an underwater autonomous robot, wireless communication nodes, pressurized algae incubators, and a whole bunch more.

The folks at the San Diego Fab Lab also produced a short video of their World Create Day activities, you can check that out below.

Continue reading “From Amritsar To Busselton; More World Create Day Stories”

Hackaday Prize Entry: Modular Stepper Control

Stepper motors are a great solution for accurate motion control. You’ll see them on many 3D printer designs since they can precisely move each axis. Steppers find uses in many robotics projects since they provide high torque at low speeds.

Since steppers are used commonly used for multi-axis control systems, it’s nice to be able to wire multiple motors back to a single controller. We’ve seen a few stepper control modules in the past that take care of the control details and accept commands over SPI, I2C, and UART. The AnanasStepper 2.0 is a new stepper controller that uses CAN bus for communication, and an entry into the 2017 Hackaday Prize.

A CAN bus has some benefits in this application. Multiple motors can be connected to one controller via a single bus. At low bit rates, it can work on kilometer long busses. The wiring is simple and cheap: two wires twisted together with no shielding requirements. It’s also designed to be reliable in high noise environments such as cars and trucks.

The project aims to implement an API that will allow control from many types of controllers including Arduino, Linux CNC, several 3D printer controllers, and desktop operating systems. With a few AnanasSteppers one of these controllers, you’d be all set up for moving things on multiple axes.

Hackaday Prize Entry: Open Source Electrospinning

Electrospinning is the process of dispensing a polymer solution from a nozzle, then applying a very high voltage potential between the nozzle and a collector screen. The result is a very, very fine fiber that is stretched and elongated down to nanometers. Why would anyone want this? These fibers make great filters because of their large surface area. Electrospinning has been cited as an enabling technology for the future of textiles. The reality, though, is that no one really knows how electrospinning is going to become a standard industrial process because it’s so rare. Not many labs are researching electrospinning, to say nothing of industry.

[Douglas Miller] is building his own electrospinning machine. Except for the ominous warning signs on the 40-kilovolt power supply, there’s nothing in this machine that makes it look any different from a normal, homebrew 3D printer. There are stepper motors inside to raise and lower a carriage, a syringe, and a handy USB port. If you didn’t know any better, you could easily assume [Doug]’s OpenESpin is designed to print fidget spinners and tiny tugboats instead of films of carbon nanotubes and piezoelectric thermoplastics.

The DIY electrospinning machine is really what the Hackaday Prize is all about. It’s an enabling technology anyone can build for a few hundred dollars that also allows real science to happen. The films and blobs being formed in [Doug]’s electrospinning machine could easily find a home in a PhD candidate’s thesis or as a component in cutting edge research on everything from battery technology to the Internet of Underpants.

Hackaday Prize Entry: Modular Rail Lighting

When operating any kind of hydroponic farming, there are a number of lighting solutions — few of them inexpensive. Originally looking for an alternative to the lighting of IKEA’s expensive hydroponics system, [Professor Fartsparkle] and their colleague prototyped a rail system that allows clip-on LED boards for variable lighting options.

Taking inspiration from wire and track lighting systems, the key was the 5mm fuse holders mounted on the bottom of the LED boards. Snipping off their stopping clip makes them easy to install and remove from the mounting rails. The rails themselves double as power conduits for the LED boards, but keeping them out of the way is easily done with the variety of 3D printed hangers [Professor Fartsparkle] has devised. Lighting is controlled by a potentiometer on the power injection board, as well as any home automation control via an ESP8266.

[Professor Fartsparkle] asserts that the boards can be slid along the rails without any noticeable flickering, but they do suffer from heat dissipation issues. That aside, the prototype works well enough that the 3W LEDs can be run at half power.

This is an ingenious — and cheap — workaround for when sunlight isn’t an option, but you are still looking for a solution capable of automation.

Hackaday Prize Entry: Coaxial Drones

[Glytch] has been building drones since before they were called drones. Instead of submitting his time machine into the Hackaday Prize, he’s throwing his pocket sized, 3D printable coaxial drone into the ring.

His focus is on designing small and very portable drones, preferably one that has folding arms and can fit into a backpack. His portfolio even includes a clone of the DJI Mavic, the gimbaled camera-carrying consumer drone known for its small volume when folded.

Navi — [Glitch]’s entry for the Hackaday Prize — is a complete departure from quadcopters with folding arms. It’s simple to use, and all he needs to do to launch it is hold it in the air and press a button. It does this by being a coaxial drone, or a cylinder with a pair of folding props sticking out the side. The chassis and mechanics for this drone are 3D printable, making this an awesome entry for the Hackaday Prize.