Hyperspectral Imaging – Seeing the Unseeable

They say that a picture is worth a thousand words. But what is a picture exactly? One definition would be a perfect reflection of what we see, like one taken with a basic camera. Our view of the natural world is constrained to a bandwidth of 400 to 700 nanometers within the electromagnetic spectrum, so our cameras produce images within this same bandwidth.

Image via Cosmos Magazine.

For example, if I take a picture of a yellow flower with my phone, the image will look just about how I saw it with my own eyes. But what if we could see the flower from a different part of the electromagnetic spectrum? What if we could see less than 400 nm or greater than 700 nm? A bee, like many other insects, can see in the ultraviolet part of the spectrum which occupies the area below 400 nm. This “yellow” flower looks drastically different to us versus a bee.

In this article, we’re going to explore how images can be produced to show spectral information outside of our limited visual capacity, and take a look at the multi-spectral cameras used to make them.  We’ll find that while it may be true that an image is worth a thousand words, it is also true that an image taken with a hyperspectral camera can be worth hundreds of thousands, if not millions, of useful data points. Continue reading “Hyperspectral Imaging – Seeing the Unseeable”

Hackaday Prize Entry: Crop Data For Improved Yields

As the world’s population continues to increase, more food will be needed for all the extra mouths to feed. Unfortunately, there’s not a whole lot of untapped available farmland. To produce extra food, crop yields need to increase. [Vignesh Ravichandran] is tackling this with the Farmcorder – a device for detecting crop nutrition levels.

The device centers around using spectroscopy to measure the chlorophyll content of leaves. This information can then be used to make educated decisions on the fertilizer required to maximize plant yield. In the past, this has been achieved with expensive bespoke devices, or, at the other end of the spectrum, simple paper color charts.

[Vignesh]’s project takes this to the next level, integrating a spectroscopy package with a GPS and logging over the GSM mobile network. This would allow farmers to easily take measurements out in the field and log them by location, allowing fertilizer application to be dialed in on a per-location basis.  The leaf sensor package is particularly impressive. Relying on a TSL2561 sensor IC, the samples are lit with 650nm and 940nm LEDs. The sensor readings can then be used to calculate the chlorophyll levels in the leaves.

It’s a project that sets out to tackle a serious world problem and uses off-the-shelf parts and some hacker know-how to do so. We hope to see this hardware on farms across the world in the near future!

Hacking Into…. A Wind Farm?

Pick a lock, plug in a WiFi-enabled Raspberry Pi and that’s nearly all there is to it.

There’s more than that of course, but the wind farms that [Jason Staggs] and his fellow researchers at the University of Tulsa had permission to access were — alarmingly — devoid of security measures beyond a padlock or tumbler lock on the turbines’ server closet. Being that wind farms are generally  in open fields away from watchful eyes, there is little indeed to deter a would-be attacker.

[Staggs] notes that a savvy intruder has the potential to shut down or cause considerable — and expensive — damage to entire farms without alerting their operators, usually needing access to only one turbine to do so. Once they’d entered the turbine’s innards, the team made good on their penetration test by plugging their Pi into the turbine’s programmable automation controller and circumventing the modest network security.

The team are presenting their findings from the five farms they accessed at the Black Hat security conference — manufacturers, company names, locations and etc. withheld for obvious reasons. One hopes that security measures are stepped up in the near future if wind power is to become an integral part of the power grid.

All this talk of hacking and wind reminds us of our favourite wind-powered wanderer: the Strandbeest!

[via WIRED]

Hackaday Prize Entry: Modular Rail Lighting

When operating any kind of hydroponic farming, there are a number of lighting solutions — few of them inexpensive. Originally looking for an alternative to the lighting of IKEA’s expensive hydroponics system, [Professor Fartsparkle] and their colleague prototyped a rail system that allows clip-on LED boards for variable lighting options.

Taking inspiration from wire and track lighting systems, the key was the 5mm fuse holders mounted on the bottom of the LED boards. Snipping off their stopping clip makes them easy to install and remove from the mounting rails. The rails themselves double as power conduits for the LED boards, but keeping them out of the way is easily done with the variety of 3D printed hangers [Professor Fartsparkle] has devised. Lighting is controlled by a potentiometer on the power injection board, as well as any home automation control via an ESP8266.

[Professor Fartsparkle] asserts that the boards can be slid along the rails without any noticeable flickering, but they do suffer from heat dissipation issues. That aside, the prototype works well enough that the 3W LEDs can be run at half power.

This is an ingenious — and cheap — workaround for when sunlight isn’t an option, but you are still looking for a solution capable of automation.

Add Robotic Farming to Your Backyard with Farmbot Genesis

Growing your own food is a fun hobby and generally as rewarding as people say it is. However, it does have its quirks and it definitely equires quite the time input. That’s why it was so satisfying to watch Farmbot push a weed underground. Take that!

Farmbot is a project that has been going on for a few years now, it was a semifinalist in the Hackaday Prize 2014, and that development time shows in the project documented on their website. The robot can plant, water, analyze, and weed a garden filled with arbitrarily chosen plant life. It’s low power and low maintenance. On top of that, every single bit is documented on their website. It’s really well done and thorough. They are gearing up to sell kits, but if you want it now; just do it yourself.

The bot itself is exactly what you’d expect if you were to pick out the cheapest most accessible way to build a robot: aluminum extrusions, plate metal, and 3D printer parts make up the frame. The brain is a Raspberry Pi hooked to its regular companion, an Arduino. On top of all this is a fairly comprehensive software stack.

The user can lay out the garden graphically. They can get as macro or micro as they’d like about the routines the robot uses. The robot will happily come to life in intervals and manage a garden. They hope that by selling kits they’ll interest a whole slew of hackers who can contribute back to the problem of small scale robotic farming.

This Motorless Pull-Behind Mower is Made From Junk

Cutting a field of grass is a straightforward and satisfying process, given a suitably powered mover. A tractor with a rotary topper to hang on its three-point linkage and power-take-off will make short work of the task.

[Donn DIY] had an agricultural quad-bike, but when it came to mowing its lack of a power-take-off meant it wasn’t much use. When he saw a home-made mower for a quad-bike online he had to give it a go himself, and came up with his own take on a mower made from junk.

He started with the rear axle and differential from a Russian built Lada, which he reconditioned, before mounting in a wooden jig with its input shaft pointing upwards. He then made a frame for three mower shafts, onto which he mounted his custom-made rotors and their machined bearing housings. Some pulley machining, and he could then link the rotor shafts to the differential with a series of V-belts and a further shaft to step up the rotor speed.

He wasn’t finished there, after the rotors came a lever mechanism for lifting the cutters off the ground, and a pair of weight baskets to ensure traction was maintained. The result is a mover that takes its drive from its wheels, and cuts grass very effectively when towed behind the quad-bike. The unguarded blades would probably give a farm insurance assessor an apoplexy, but for the purposes of the video below the break at least we can see everything.

Continue reading “This Motorless Pull-Behind Mower is Made From Junk”

Autonomous Tractor Brings In The Harvest

[Matt Reimer] is a farmer in Southwestern Manitoba, Canada. It’s grain country, and at harvest time he has a problem. An essential task when harvesting is that of the grain cart driver, piloting a tractor and grain trailer that has to constantly do the round between unloading the combine harvester and depositing the grain in a truck. It’s a thankless, unrelenting, and repetitive task, and [Matt]’s problem is that labour is difficult to find when every other farmer in the region is also hiring.

His solution was to replace the driver with a set of Arduinos and a Pixhawk autopilot controlling the tractor’s cab actuators, and running ArduPilot, DroneKit, and his own Autonomous Grain Cart software. Since a modern tractor is effectively a fly-by-wire device this is not as annoying a task as it would have been with a tractor from several decades ago, or with a car. The resulting autonomous tractor picks up the grain from his combine, but he reminds us that for now it still deposits the harvest in the truck under human control. It is still a work-in-progress with only one harvest behind it, so this project is definitely one to watch over the next few months.

Writing from the point of view of someone who grew up on a farm and has done her share of harvest-time tractor driving it’s possible to see both the strengths and weaknesses of an autonomous grain cart. His fields on the Canadian prairie are very large and flat, there is plenty of space and the grain makes its way from the field to the elevator in a truck. To perform the same task in the smaller and irregular fields of southern England for example with a mile round trip down country lanes to the grain store would be a much greater challenge. Aside from that it’s worth noting that his John Deere is a 220hp 4WD workhorse that is capable of going over almost any terrain on a farm with very few obstacles able to stop it. This thing can do serious damage to life and property simply by running it over or driving straight through it, so safety has a dimension with an autonomous tractor in a way that it never will with for example a vacuum cleaner or even a lawnmower.

Those observations aside, this kind of technology undeniably represents a step change in farming practice on a par with the move from horse power to tractors in the first half of the last century. However the technological barriers that remain end up being solved, it’s likely that you’ll see plenty more machines like this in the fields of the future.

The video below the break shows the autonomous grain cart in action. Plenty of big-sky tractoring action, and for those of you unfamiliar with farming it should provide some understanding of the task of getting grain from combine to store.

We’ve talked about robotic farming more than once here at Hackaday. The gantry-based Farmbot, the six-legged Prospero robot farmer, or another hexapod confusingly also called Farmbot, for example. But these have all been hacker’s solutions to the problem using the concepts with which they are familiar. What makes [Matt]’s project different is that it is a farmer’s solution to a real farming problem by automating the machinery he already uses to do the job. Farmers have been doing what we would now call hacking at the hardware of their craft since time immemorial, [Matt]’s work is just the latest manifestation of a rich heritage.

Continue reading “Autonomous Tractor Brings In The Harvest”