Formlabs Announces A Desktop SLS 3D Printer

Formlabs have just announced the Fuse 1 — a selective laser sintering (SLS) 3D printer that creates parts out of nylon. Formlabs is best known for their Form series of resin-based SLA 3D printers, and this represents a very different direction.

SLS printers, which use a laser to sinter together models out of a powder-based material, are not new but have so far remained the domain of Serious Commercial Use. To our knowledge, this is the first time an actual SLS printer is being made available to the prosumer market. At just under 10k USD it’s definitely the upper end of the prosumer market, but it’s certainly cheaper than the alternatives.

The announcement is pretty light on details, but they are reserving units for a $1000 deposit. A few things we can throw in about the benefits of SLS: it’s powder which is nicer to clean up than resin printers, and parts should not require any kind of curing. The process also requires no support material as the uncured powder will support any layers being cured above it. The Fuse 1’s build chamber is 165 x 165 x 320 mm, and can be packed full of parts to make full use of the volume.

In the past we saw a detailed teardown of the Form 2 which revealed excellent workmanship and attention to detail. Let’s hope the same remains true of Formlabs’ newest offering.

New Useless Machine Does The Twist

Useless machines might not do any work or produce anything of value on their own, but they can be a great learning tool, and are often beautifully crafted as an expression of the builder’s artistic talents. By and large, they consist of a switch to turn the machine on, and an arm that switches the machine back off in response to this. Vladimir had a different take, and built this twisting vase useless machine instead.

The build references the twisting vases we saw recently – [Vladimir] loved the way they so elegantly opened and closed, and decided to base the build around that. The useless part of the machine is the lifting mechanism – a servo turns a pulley, which uses a magnet on a rope to lift the vase. Upon reaching a certain point, the vase drops, and the magnet is once again lowered to lift it back up again.

The first prototype used a simple delay-based timing loop to determine when to drop the magnet again, however over time this would fall out of sync with the vase’s position and the magnet would fail to attach to the vase. For the second version, [Vladimir] improved things by using a limit switch to determine the position of the vase instead of running on timing alone. The machine’s frame was also rebuilt using copper pipe, which allowed the wires and servo to be hidden from sight. The second revision of the project shows the difference polish can make – differences like these make the machine more suitable for display as a curio in a stylish home setting, rather then a messy project that lives on the workbench only.

Be sure to check out the video of the project below the break. For a simpler useless machine, check out this build. 
Continue reading “New Useless Machine Does The Twist”

Hackaday Prize Entry: 3D Printed Mini-Lathe

Lathes can be big, powerful, dangerous machines. But sometimes there’s a call for making very small parts out of soft materials, like plastic and wood. For jobs like this, you could use something like this 3D printed mini-lathe.

The benefits of 3D printing a tool like this are plentiful. The design can be customized and refined by the end user; [castvee8] notes that the machine can be made longer simply by increasing the length of the lead screw and guide rails. The machine does rely on some metal parts and a motor; but the real power here is that if you can’t source the exact components, you can always customize the files to suit what you have on hand.

[castvee8] aimed to make the entire build as easy as possible for the novice – even the motor and speed controller are off-the-shelf modules. It’s a testament to the golden age we live in that an entire lathe can be built out of modules and 3D printed parts. The project makes up another member of the family of 3D printed tools [castvee8] is showing off on Hackaday.io.

Hackaday Prize Entry: Modular Stepper Control

Stepper motors are a great solution for accurate motion control. You’ll see them on many 3D printer designs since they can precisely move each axis. Steppers find uses in many robotics projects since they provide high torque at low speeds.

Since steppers are used commonly used for multi-axis control systems, it’s nice to be able to wire multiple motors back to a single controller. We’ve seen a few stepper control modules in the past that take care of the control details and accept commands over SPI, I2C, and UART. The AnanasStepper 2.0 is a new stepper controller that uses CAN bus for communication, and an entry into the 2017 Hackaday Prize.

A CAN bus has some benefits in this application. Multiple motors can be connected to one controller via a single bus. At low bit rates, it can work on kilometer long busses. The wiring is simple and cheap: two wires twisted together with no shielding requirements. It’s also designed to be reliable in high noise environments such as cars and trucks.

The project aims to implement an API that will allow control from many types of controllers including Arduino, Linux CNC, several 3D printer controllers, and desktop operating systems. With a few AnanasSteppers one of these controllers, you’d be all set up for moving things on multiple axes.

Sexiest Tiny Metal Core-XY 3D Printer

That’s a lot of qualifications, but we’re pretty sure that you can’t accuse us of hyperbole in the title: this is one of the tightest little 3D printer builds we’ve ever seen. Add in the slightly esoteric CoreXY kinematics and the thick aluminum frame, and it’s a speed demon in addition to being a looker.

[René] had built a few 3D printers before, so he had a good feel for the parameters and design tradeoffs before he embarked on the DICE project. Making a small print volume, for instance, means that the frame can be smaller and thus exponentially more rigid. This means that it’s capable of very fast movements — 833 mm/s is no joke! It also looks to make very precise little prints. What could make it even more awesome? Water-cooled stepper motors, magnetic interchangeable printheads, and in-built lighting.

The build looks amazing, and there is video documentation of the whole thing on [René]’s site, including a full bill of materials and designs. It’s certainly not the cheapest 3D printer we’ve ever seen, and the tiny build platform makes it a bad choice for a general-purpose machine, but if you need a second printer and you want one with style, the DICE looks hard to beat.

Thanks [Laimonus Mockus] for the tip!

Hackaday Prize Entry: MCXY – Mini Laser Cut Aluminum 3D Printer

With the easy availability of cheap and 3D printers from the usual Chinese websites, you might think that there could be little room for another home-made 3D printer project. fortunately, the community of 3D printer making enthusiasts doesn’t see it that way.

[Bobricius] has a rather nice 3D printer design in the works that we think you’ll like. It follows the MakerBot/Ultimaker style of construction in that it is a box rather than a gantry, and it is assembled from CNC-cut aluminum for a sturdy and pleasing effect. Whar sets it apart though is its size, at only 190x190x251mm and with an 80x80x80mm print volume, it’s tiny. You might wonder why that could be an asset, but when you consider that he already has a much larger printer it becomes obvious that something small and portable for quick tiny prints could be an asset.

Unusually for a home-made 3D printer, it has no 3D printed parts, instead, it is laser cut throughout. And also unusually all the CAD work was done in EAGLE, better known for PCB work. It’s a work in progress we’re featuring today because it’s a Hackaday Prize entry, but it looks as though the finished item will be something of a little gem.

Homemade 3D printers can be particularly impressive, for example, we’ve shown you this excellent SLA printer.

Endstops That Stay Out Of The Way

In the course of building a new delta printer, [thehans] decided he needed his own endstop design that used minimal hardware. Endstops are just switches that get hit when the printer moves at the extreme of an axis, but [thehans] wanted something with a bit of refinement for his BigDelta 3D Printer build.

The result is a small unit that cradles a microswitch and needs only a single zip tie that mounts flush, resulting in a super tidy looking piece. In addition, it mounts on the delta’s v-slot rails such that the mount does not take up any of the machine’s range of motion, because the carriage can travel past it. It is a parametric design made in OpenSCAD, so feel free to modify it to accommodate other types of switches.

Continue reading “Endstops That Stay Out Of The Way”