How Good Is Your Aim First Thing In The Morning?

For the less than highly-driven individuals out there — and even some that are — sometimes, waking up is hard to do, and the temptation to smash the snooze button is difficult to resist. If you want to force your mind to immediately focus on waking up, this Nerf target alarm clock might get you up on time.

Not content to make a simple target, [Christopher Guichet] built an entire clock for the project. The crux of the sensor is a piezoelectric crystal which registers the dart impacts, and [Guichet]’s informative style explains how the sensor works with the help of an oscilloscope. A ring of 60 LEDs with the piezoelectric sensor form the clock face, all housed in a 3D printed enclosure. A rotary encoder is used to control the clock via an Arduino Uno, though a forthcoming video will delve into the code side of things; [Guichet] has hinted that he’ll share the files once the code has been tidied up a bit.

Continue reading “How Good Is Your Aim First Thing In The Morning?”

3D-Printed Vise Is A Mechanical Marvel

We often wonder how many people have 3D printers and wind up just printing trinkets off Thingiverse. To get the most out of a printer, you really need to be able to use a CAD package and make your own design. However, just like a schematic editor doesn’t make your electronic designs work, a CAD program won’t ensure you have a successful mechanical part.

[TheGoofy] has a 100% 3D printed vise that looks like it is useful. What’s really interesting, though, is the video (see below) where he explains how printing affects material strength and other design considerations that went into the vise.

Continue reading “3D-Printed Vise Is A Mechanical Marvel”

More Layoffs At MakerBot

MakerBot CEO [Nadav Goshen] announced that changes are needed to ensure product innovation and support long-term goals in a blog post published yesterday. To that end, MakerBot will reduce its staff by 30%. This follows a series of layoffs over a year ago that reduced the MakerBot workforce by 36%. With this latest series of layoffs, MakerBot has cut its workforce by over 50% in the span of two years.

In addition to these layoffs, the hardware and software teams will be combined. Interestingly, the current Director of Digital Products, [Lucas Levin], will be promoted to VP of Product. Many in the 3D printer community have speculated MakerBot is pivoting from a hardware company to a software company. [Levin]’s promotion could be the first sign of this transition.

When discussing MakerBot, many will cite the documentary Print the Legend. While it is a good introduction to the beginnings of the desktop 3D printer industry, it is by no means complete. The documentary came out too early, it really doesn’t mention the un-open sourceness of MakerBot, the lawsuit with Form Labs wasn’t covered, and there wasn’t a word on how literally every other 3D printer manufacturer is selling more printers than MakerBot right now.

Is this the end of MakerBot? No, but SYSS is back to the pre-3D-printer-hype levels. Stratasys’ yearly financial report should be out in a month or so. Last year, that report was the inspiration for the MakerBot obituary. It’s still relevant, and proving to be more and more correct, at least from where MakerBot’s Hardware business stands.

3D Printer Transforms To CNC

Superficially, it is easy to think about converting a 3D printer into a CNC machine. After all, they both do essentially the same thing. They move a tool around in three dimensions. Reducing this to practice, however, is a problem. A CNC tool probably weighs more than a typical hotend. In addition, cutting into solid material generates a lot of torque.

[Thomas Sanladerer] knew all this, but wanted to try a conversion anyway. He had a few printers to pick from, and he chose a very sturdy MendelMax 3. He wasn’t sure he’d wind up with a practical machine, but he wanted to do it for the educational value, at least. The result, as you can see in the video below, exceeded his expectations.

Continue reading “3D Printer Transforms To CNC”

Stuff An Android In Your Xbox Controller’s Memory Slot

What is this, 2009? Let’s face facts though – smartphones are computing powerhouses now, but gaming on them is still generally awful. It doesn’t matter if you’ve got the horsepower to emulate any system from the last millennium when your control scheme involves awkwardly pawing away at glass when what you need is real buttons. You need a real controller, and [silver] has the answer – a 3D printed phone mount for the original Xbox Controller.

It’s more useful than it initially sounds. The original Xbox used USB 1.1 for its controllers. With a simple OTG cable, the controllers can be used with a modern smartphone for gaming. The simple 3D printed clamp means you can have a mobile gaming setup for pennies – old controllers are going cheap and it’s only a couple of dollars worth of filament. The trick is using the controller’s hilariously oversized memory card slots – for some reason, Microsoft thought it’d be fun to repackage a 64MB flash drive into the biggest possible form factor they could get away with. The slots also acted as a port for online chat headsets, and finally in 2017, we’ve got another use for the form factor.

For the real die-hard purists, [silver] also shares a photo of a similar setup with a Nintendo 64 controller – including a big fat USB controller adapter for it, hanging off the back. Not quite as tidy, that one.

It’s a neat little project – we love to see useful stuff built with 3D printers. If you’ve been looking for something functional to print, this is it. Or perhaps you’d like to try these servo-automated 3D printed light switches?

3D Printer With Tilted Bed

[Oliver Tolar] and [Denis Herrmann], two students from the Zurich University of Applied Sciences (ZHAW), designed and produced a 3D printer prototype that has a movable printing bed that can tilt. By tilting, objects with critical overhangs can be printed without the additional support material. The printer has six axes, three axes control the print head as usual and three other axes control the printing bed, allowing a wider range of movements.

The students claim that besides saving on the support material this printer can actually save time while printing objects that need a lot of support since, we assume, it’s faster to tilt the bed than to print the support itself. In normal 3D printers the plate is always horizontal and the print object is built up in horizontal layers. In this printer, for large overhangs, the printing bed is held in such a way that the print object is pivoted until perpendicular to the print head. Of course, for round shapes it will probably be different but we only saw it in action in one demonstration video. There is also the plus side that, when a print finishes, it’s finished. No x-acto knife to remove support, no sand paper, no time wasted.

Having the software controlling the bed properly was more difficult than the assembly of the printer, they said. It is still under development as it cannot, for example, simultaneously move the print head and printing bed to produce a continuous print.

Continue reading “3D Printer With Tilted Bed”

Writing with a 3D printer

Good Penmanship With A 3D Printer

[Chris Mitchell] was going to make his own plotter for doing cursive writing for cards but realized he might be able to use his 3D printer to do the writing instead. But then he couldn’t find any suitable software so he did what you’re supposed to do in this situation, he wrote his own called 3DWriter. He even 3D printed a holder so he could attach a pen to the side of the extruder. When not in use as a plotter he simply retracts the pen tip.

The software is written in C# for Windows and is available on GitHub along with a detailed write-up. He clearly put a lot of thought into what features the software offers. After selecting the font, you type in whatever you want printed and then preview it to make sure it looks good. There’s also a bunch of G-Code settings you can fill in such as bed size, the horizontal and vertical offsets of the pen tip from the extruder tip, drawing speed and so on. There’s even an option to do a dry run with the pen raised so you can make sure it’ll draw on the bed where you expect it to.

The code itself is quite clean and easy to understand. If you’re curious like we were at what information is in the font files and how it’s translated into G-Code then download the source from the GitHub page and have a look. [Chris] settled on a font set called Hershey fonts since they’re primarily stroke based fonts as opposed to outline fonts which are what other programs he’d looked at used.

This makes us think of all those 3D printers with busted extruders we’ve seen collecting dust on hackerspace shelves or simply ones considered obsolete. Using them as a plotter gives them new life — even if just as a fun way to learn about writing code for CNC machines. It makes us wonder what other 2D uses they can be put to… cutting vinyl? laser printing? Ideas anyone?

In any case, have a look at the video below to see it in action as a 2D plotter. As a bonus, you’ll also see line art it drew using an Inkscape plugin.

Continue reading “Good Penmanship With A 3D Printer”