Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

3D Printering: Water-Cooled Hotends

There’s an old joke about the Thermos bottle that keeps things hot and cold, so someone loaded it with soup and ice cream. That joke is a little close to home when it comes to FDM 3D printers.

You want to melt plastic, of course, or things won’t print, so you need heat. But if the plastic filament gets hot too early, it will get soft, expand, and jam. Heat crawling up the hot end like this is known as heat creep and there are a variety of ways that hot ends try to cope with the need to be hot and cold at the same time. Most hotends today are air-cooled with a small fan. But water-cooled hotends have been around for a while and are showing up more and more. Is it a gimmick? Are you using, planning to use, or have used (and abandoned) water cooling on your hot end?

Heat Break

The most common method is to use a heat-break between the heating block and the rest of the filament path. The heat-break is designed to transfer as little heat as necessary, and it usually screws into a large heat sink that has a fan running over it. What heat makes it across the break should blow away with the fan cooling.

From Thomas Sanladerer’s review of the Copperhead hotend. Heat break in the middle.

High tech solutions include making heat-breaks out of titanium or even two dissimilar metals, all with the aim of transferring less heat into the cooler part of the hot end. More modern hot ends use support structures so the heatbreak doesn’t need mechanical rigidity, and they can make very thin-walled heatbreaks that don’t transmit much heat. Surely, then, this is case closed, right? Maybe not.

While it is true that a standard heat-break and a fan can do the job for common 3D printing tasks, there can be problems. First, if you want to print fast — time is money, after all — you need more power to melt more filament per second. If a heatbreak transfers 10% of the heat, this increases demands on the upstream cooling. Some engineering materials want to print at higher temperatures, so you can have the same problem there as well. If you want to heat the entire print chamber, which can help with certain printing materials, that can also cause problems since the ambient air is now hotter. Blowing hot air around isn’t going to cool as effectively. Not to mention, fans that can operate at high temperatures are notoriously expensive.

There are other downsides to fans. Over a long print, a marginal system might eventually let enough heat creep up. Then there’s the noise of a fan blowing during operation. True, you probably have other fans and noisy parts, but it is still one more noise source. With water cooling, you can move the radiator outside a heated enclosure and use larger, slower, and quieter fans while getting more cooling right where you want it. Continue reading “3D Printering: Water-Cooled Hotends”

Better Car Hinges By 3D Printing

We often use 3D printing to replicate items we might otherwise make with traditional machining methods. Fraunhofer’s new door hinge for a sports car takes a different tack: it tries to be better than the equivalent machined part. The company claims that the new part is half the cost and weighs 35% less than the normal hinge.

Using tools in their 3D Spark software, the team analyzed different factors that led to manufacturing cost. Some of these were specific to the part while others were specific to the process. For example, orienting the part to minimize support and maximize the quantity that fit on the build surface.

Continue reading “Better Car Hinges By 3D Printing”

Printing In Silicone

When you think of making something out of silicone, you usually think of using a mold and injecting it with the material. Can you 3D print it? [Kimberly Beckett] answers that very question in a recent post. The short answer is yes, but you need specialized printing equipment.

Most consumer or hobby printers use either filament deposition or photoresin. Neither of these processes are good for printing silicone. For one thing, silicone doesn’t melt and reform like a thermoplastic. After all, that is why we like making hotend socks and oven utensils with the material. If you do melt silicone, you get a gooey mess, not a nice fluid you can push through an extruder nozzle. As for resin printing, silicone is resistant to UV so the chances of coming up with UV curable silicone are pretty small.

Continue reading “Printing In Silicone”

What do we want? Monowheel!

Monowheel Mayhem: When Good Gyroscopic Precession Goes Bad

Since the dawn of the age of the automobile, motorheads have been obsessed with using as few wheels as possible. Not satisfied with the prospect of being incompletely maimed by a motorcycle, the monocycle was born. Gracing the covers of Popular magazines and other periodicals, these futuristic wheels of doom have transfixed hackers of all kinds. [James Bruton] is one such hacker, and in the video below the break you can see his second iteration of a 3d printed monowheel.

[James]’ wonderful monowheel is beautifully engineered. Bearing surfaces, gears, idlers, motors, and yes, twin gyroscopes are all contained within the circumference of the tire. The gyroscopes are actuated by a rather large servo, and are tied together by a gear that keeps their positions in sync. Their job is to keep the monowheel balanced at all times.

But as [James] discovered, the chief difficulty of only having one wheel isn’t lateral balancing. Ask any monocyclist and they’ll assure you that it’s possible. The real trick is balancing the machine fore and aft. Unlike a two wheeled velocipede, the monowheel has nothing to exert torque against save for a bit of gravity.

As [James] found out the hard way, it was within this fore-aft balancing act that the gyroscopic precession reared its ugly head. The concept is explained well in the video. We won’t spoil the surprise ending because the explanation and conclusion are quite good so make sure to watch to the end!

If you’d like to look at [James]’ first version, we covered it here. And if you’re the daredevil type, perhaps we can interest in you in a two stroke human sized monowheel that will probably end in an ER visit. At least they wore a helmet. Thanks to [Baldpower] for the tip!

Continue reading “Monowheel Mayhem: When Good Gyroscopic Precession Goes Bad”

Giant 3D Prints Piece-by-Piece

While FDM printers have gotten bigger lately, there’s almost always going to be a part that is bigger than your bed. The answer? Break your design into parts and assemble them after printing. However, the exact method to do this is a bit of a personal choice. A mechanical engineering student wrote:

After researching the state of the art as well as your ideas here on reddit, I realized, that there are almost no universal approaches to divide a large part and join the pieces which maintain mechanical strength, precisely position each segment, and also counteract tolerances due to the FDM-process.

Therefore I tried to develop a universal method to segment large trim parts, additively manufacture each segment and finally join those segments to form the desired overall part.

The result is a research paper you can download for free. The method focuses on thin parts intended as automotive trim, but could probably be applied to other cases.

You can read about the thought process, but the final result was a joggle — a joint made with a rabbet and tongue. Adhesive holds it together, but the joint offers advantages in constraining the final product and the transmission of force in the assembly. Judging by the picture, the process works well. It would be interesting to see slicer software develop the capability to segment a large model using this or a similar technique.

Of course, you can just build a bigger printer, at least to a point. It seems, though, that that point is pretty big.

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

3D Printering: Getting Started With Universal Bed Leveling

Last time we talked about how Marlin has several bed leveling mechanisms including unified bed leveling or UBL. UBL tries to be all things to all people and has provisions to create dense meshes that model your bed and provides ways for you to adjust and edit those meshes.

We talked about how to get your printer ready for UBL last time, but not how to use it while printing. For that, you’ll need to create at least one mesh and activate it in your startup code. You will also want to correctly set your Z height to make everything work well. Continue reading “3D Printering: Getting Started With Universal Bed Leveling”

3d printed windvane

3D Printed Sensor For Finding Wind Direction And Likely Much More

Have you ever wondered how an electronic wind vane translates a direction into a unique signal? It seems as though it might be very complicated, and indeed some of them are. [martinm] over at yoctopuce.com has an excellent writeup about measuring wind direction using just a single, easily printed disk and some phototransistors.

Commercial weather vanes often use complicated multi-tracked disks with magnets and reed switches, conductive traces and brushes, or some other means of getting a fine resolution. Unfortunately some of these are prone to wear or are otherwise more complicated than they need to be.

What makes [martinm]’s solution unique is that they have applied previous research on the subject to a simple and durable 3d printed wind vane that looks like it’ll be able to handle whatever global warming can throw at it. The encoder’s simplicity means that it could likely be used in a large number of applications where low resolution position sensing is more than enough- the definition of a great hack!

Adding more tracks or even more disks would enable higher resolution, but the 12 degree resolution seems quite good for the purpose. Such a neat wind vane design will surely be welcome if you want to 3d print your own weather station. Thanks to [Adrian] for the great tip!