Homemade Toy Wind Tunnel Blows (Really Well)

Sometimes a kid wakes up on Christmas morning and runs downstairs, only hoping to see one thing: a shiny new wind tunnel. This past December, that’s exactly what [SparksAndCode]’s son found under beside the tree, complete with a bag of scarves, ping-pong balls, and other fun things to launch through it (in the name of physics, of course).

The real story here starts about a week before Christmas, when [SparksAndCode]’s son was enthralled by a similar device at a science museum. At his wife’s suggestion, [SparksAndCode] got to work designing a and building a wind tunnel with hardware-store parts, his deadline looming ahead. The basic structure of the tunnel is three rods which support plywood collars. The walls are formed by plastic sheets rolled inside the collars to make a tube. Underneath, a Harbor Freight fan supplies a nice, steady stream of air for endless entertainment.

After finding a few bugs during his son’s initial beta testing on Christmas morning, [SparksAndCode] brought the wind tunnel back into the shop for a few tweaks and upgrades, including a mesh cover on the air intake to stop things from getting sucked into the fan. The final result was a very functional (and fun!) column of air. Looking for even more function (but not necessarily less fun)? We’ve got you covered too with this home-built research wind tunnel from a few years back.

Continue reading “Homemade Toy Wind Tunnel Blows (Really Well)”

Retrotechtacular: Understanding The Strength Of Structural Shapes

Strength. Rigidity. Dependability. The ability to bear weight without buckling. These are all things that we look for when we build a mechanical structure. And in today’s Retrotechtacular we take a closer look at the answer to a question: “What’s in A Shape?”

As it turns out, quite a lot. In a wonderful film by the prolific Jam Handy Organization in the 1940’s, we take a scientific look at how shape affects the load bearing capacity of a beam. A single sided piece of metal, angle iron, C-channel, and boxed tubing all made of the same thickness metal are compared to see not just just how much load they can take, but also how they fail.

The concepts are then given practical application in things that we still deal with on a daily basis: Bridges, cars, aircraft, and buildings. Aircraft spars, bridge beams, car frames, and building girders all benefit from the engineering discussed in this time capsule of film.

None of the concepts in this video are suddenly out of date, because while our understanding of engineering has certainly progressed since this film was made, these basic concepts remain the same. As such, they will apply to any structural or mechanical devices that we make, be it 3d printed, CNC routed, welded, glued, vacuum formed, zip tied, duct taped, bailing wired, or hot glued.

Keep your eyes open for a wonderful sights and sounds of a rare Boeing 314 Clipper landing on water and a 1920’s Buffalo Springfield Steam Roller demonstrating how wonderful the film’s sponsor, Chevrolet, makes their automobile frames.

Continue reading “Retrotechtacular: Understanding The Strength Of Structural Shapes”

Ski lift in at a European ski resort

Ski Lift Design Does The Impossible

Tis The Season, for those who are so inclined, to loft themselves to the top of a steep snow-covered hill and then go downhill, really fast. And if something gets in their way, turn. Whether they be on skis, a snowboard, or some other means, getting down usually involves using gravity. Getting up, on the other hand, usually involves a ski lift. And in the video by [kalsan15] after the break, we learn how technology has stepped in to make even the most inaccessible slopes just a lift ride away.

Ski lift in at a European ski resort
A ski lift that can only turn left.

In its most simple form, a ski lift is two pulleys connected by a steel cable. The pulley at the bottom of the hill is powered, and the pulley at the top of the hill serves as an idler. Attached to the steel cable are some means for a person to either sit down or grab a handle and be hoisted to the top of the hill.

Such a simple arrangement works fine if the geography allows for it, but what if there are turns, or there need to be multiple idlers to keep the wire taut but also close to the ground? Again, the most basic ski lifts have limitations. If the cable turns left around the idler, then the attachment for the handle or chair has to be on the right, making a right turn around the idler an impossibility.

How then can this problem be solved? We won’t spoil the outcome, but we recommend checking out [kalsan15]’s video for an excellent description of the problem and the solution that’ll leave you wondering “Why didn’t I think of that!?”

If you don’t find this hacky enough, then take a moment to learn how you too can not just make a gas-powered ski lift for your cabin in the woods, but then ride your slope down on your DIY Ski Bike!

Continue reading “Ski Lift Design Does The Impossible”

Building Blocks: Relating Mechanical Elements To Electronic Components

Ask any electronics hobbyist or professional what the simplest building blocks of electronic circuits are, and they’ll undoubtedly say resistors, capacitors, and inductors. Ask a mechanically-inclined person the same question about their field and the answer will probably be less straightforward. Springs would make the list for sure, but then… hmm. Maybe gears? 80/20 aluminum extrusions?

As it turns out, there are a handful of fundamental building blocks in the mechanisms world, and they’re functionally very similar, and mathematically identical, to the Big Three found in electrical engineering.

Mechanical Equivalents

Before we look at the components themselves, let’s step back a moment and think about voltage and current. Voltage is a potential difference between two points in a circuit, sometimes called electromotive force (EMF). It turns out that EMF is an apt term for it, because it is roughly analogous to, well, force. Voltage describes how “hard” electrons are being “pushed” in a circuit. In much the same vein, current describes the rate of electric charge flow. Continue reading “Building Blocks: Relating Mechanical Elements To Electronic Components”

Engineering The Less Boring Way

We have to admire a YouTube channel with the name [Less Boring Lectures]. After all, he isn’t promising they won’t be boring, just less boring. Actually though, we found quite a few of the videos pretty interesting and not boring at all. The channel features videos about mechanical engineering and related subjects like statics and math. While your typical electronics project doesn’t always need that kind of knowledge, some of them do and the mental exercise is good for you regardless. A case in point: spend seven minutes and learn about 2D and 3D vectors in two short videos (see below). Or spend 11 minutes and do the whole vector video in one gulp.

These reminded us of Kahn Academy videos, although the topics are pretty hardcore. For example, if you want to know about axial loading, shear strain, or free body diagrams, this is a good place to look.

Continue reading “Engineering The Less Boring Way”

HackadayU Announces Rhino, Mech Eng, And AVR Classes During Winter Session

The winter lineup of HackadayU courses has just been announced, get your tickets now!

Spend those indoor hours leveling up your skills — on offer are classes to learn how to prototype like a mechanical engineer, how to create precision 3D models in Rhino, or how to dive through abstraction for total control of AVR microcontrollers. Each course is led by an expert instructor over five classes held live via weekly video chats, plus a set of office hours for further interaction.

  • Introduction to 3D using Rhino
    • Instructor: James McBennett
    • Course overview: Introduces students to Rhino3D, a NURBS based 3D software that contains a little of everything, making it James’ favorite software to introduce students to 3D. Classes are on Tuesdays at 6pm EST beginning January 26th
  • Prototyping in Mechanical Engineering
    • Instructor: Will Fischer
    • Course overview: The tips and tricks from years of prototyping and mechanical system design will help you learn to think about the world as a mechanical engineer does. Classes are on Tuesdays at 1pm EST beginning January 26th
  • AVR: Architecture, Assembly, & Reverse Engineering
    • Instructor: Uri Shaked
    • Course overview: Explore the internals of AVR architecture; reverse engineer the code generated by the compiler, learn the AVR assembly language, and look at the different peripherals and the registers that control their behavior. Classes are on Wednesdays at 2pm EST beginning January 27th

Consider becoming an Engineering Liaison for HackadayU. These volunteers help keep the class humming along for the best experience for students and instructors alike. Liaison applications are now open.

HackadayU courses are “pay-as-you-wish” with a $10 suggested donation; all proceeds go to charity with 2019 contributions topping $10,100 going to STEAM:CODERS. There is a $1 minimum to help ensure the live seats don’t go to waste. Intro videos for each course from the instructors themselves are found below, and don’t forget to check out the excellent HackadayU courses from 2020.

Continue reading “HackadayU Announces Rhino, Mech Eng, And AVR Classes During Winter Session”

Remoticon Video: The Mechanics Of Finite Element Analysis

Hardware hacking can be extremely multidisciplinary. If you only know bits and bytes, but not solder and electrons, you’re limited in what you can build. The same is true for mechanical design, where the forces of stress and strain suddenly apply to your project and the pile of code and PCBs comes crashing to the ground.

In the first half of his workshop, Naman Pushp walks you through some of the important first concepts in mechanical engineering — how to think about the forces in the world that act on physical objects. And he brings along a great range of home-built Jugaad props that include a gravity-defying tensegrity string sculpture and some fancy origami that help hammer the topics home.

In the second half of the workshop, Naman takes these concepts into computer simulation, and gives us good insight into the way that finite-element analysis simulation packages model these same forces on tiny chunks of your project’s geometry to see if it’ll hold up under real world load. The software he uses isn’t free by any definition — it’s not even cheap unless you have a student license — but it’s nonetheless illuminating to watch him work through the flow of roughly designing an object, putting simulated stresses and strains on it, and interpreting the results. If you’ve never used FEA tools before, or are looking for a compressed introduction to first-semester mechanical engineering, this talk might be right up your alley. Continue reading “Remoticon Video: The Mechanics Of Finite Element Analysis”