Dig Into The Apple Device Design Guide

Millions of people worldwide have just added new Apple gadgets to their lives thanks to the annual end of December consumerism event. Those who are also Hackaday readers are likely devising cool projects incorporating their new toys. This is a good time to remind everybody that Apple publishes information useful for such endeavors: the Accessory Design Guidelines for Apple Devices (PDF).

This comes to our attention because [Pablo] referenced it to modify an air vent magnet mount. The metal parts of a magnetic mount interferes with wireless charging. [Pablo] looked in Apple’s design guide and found exactly where he needed to cut the metal plate in order to avoid blocking the wireless charging coil of his iPhone 8 Plus. What could have been a tedious reverse-engineering project was greatly simplified by Reading The… Fine… Manual.

Apple has earned its reputation for hacker unfriendliness with nonstandard fasteners and liberal use of glue. And that’s even before we start talking about their digital barriers. But if your project doesn’t involve voiding the warranty, their design guide eliminates tedious dimension measuring so you can focus on the fun parts.

Dimensioned drawing of Apple iPad Pro

This guide is packed full of dimensioned drawings. A cursory review shows that they look pretty good and aren’t terrible at all. Button, connector, camera, and other external locations make this an indispensable tool for anyone planning to mill or print an interface for any of Apple’s hardware.

So let’s see those projects! Maybe a better M&M sorter. Perhaps a time-lapse machine. Or cure your car’s Tesla envy and put a well-integrated iPad into the dashboard.

New Life For An Obscure Apple Plotter

We’ve all at some point or other seen something done online by somebody else, and thought “I’d like to have a go at that!”. When [Phooky] saw the artwork on the #PlotterTwitter hashtag, he remembered a past donation of a plotter to the NYC Resistor hackerspace. Some searching through the loft revealed a dusty cardboard box containing not the lovely Hewlett-Packard he’d hoped for, but instead an Apple 410 Color Plotter. This proved to be such an obscure part of the legacy Apple product line that almost no information was available for it save for a few diagrams showing DIP switch settings for the serial port.

Undeterred, he took a look inside and found a straightforward enough control board featuring a Z80 processor and support chips with 1983 date codes. The ROMs were conveniently socketed, so after dumping their contents, he was able to identify the routine for the plotter’s test program, and thus work from there to deduce its command set.  A small matter of the plotter using hardware handshaking lines to signal a full buffer later, and he was able to use it to produce beautiful plots. Should you be one of the lucky few remaining Apple 410 owners, you may find his software library for it to be of some use.

If you’d like to see some more aged plotter action on these pages, we’ve had an analog Hewlett Packard here in the past, as well as a vintage drum plotter.

Thanks [Sophi] for the tip.

Face ID Defeated With 3D Printed Mask (Maybe)

Information about this one is still tricking in, so take it with a grain of salt, but security company [Bkav] is claiming they have defeated the Face ID system featured in Apple’s iPhone X [Dead link, try the Internet Archive]. By combining 2D images and 3D scans of the owner’s face, [Bkav] has come up with a rather nightmarish creation that apparently fools the iPhone into believing it’s the actual owner. Few details have been released so far, but a YouTube video recently uploaded by the company does look fairly convincing.

For those who may not be keeping up with this sort of thing, Face ID is advertised as an improvement over previous face-matching identification systems (like the one baked into Android) by using two cameras and a projected IR pattern to perform a fast 3D scan of the face looking at the screen. Incidentally, this is very similar to how Microsoft’s Kinect works. While a 2D system can be fooled by a high quality photograph, a 3D based system would reject it as the face would have no depth.

[Bkav] is certainly not the first group to try and con Apple’s latest fondle-slab into letting them in. Wired went through a Herculean amount of effort in their attempt earlier in the month, only to get no farther than if they had just put a printed out picture of the victim in front of the camera. Details on how [Bkav] managed to succeed are fairly light, essentially boiling down to their claim that they are simply more knowledgeable about the finer points of face recognition than their competitors. Until more details are released, skepticism is probably warranted.

Still, even if their method is shown to be real and effective in the wild, it does have the rather large downside of requiring a 3D scan of the victim’s face. We’re not sure how an attacker is going to get a clean scan of someone without their consent or knowledge, but with the amount of information being collected and stored about the average consumer anymore, it’s perhaps not outside the realm of possibility in the coming years.

Since the dystopian future of face-stealing technology seems to be upon us, you might as well bone up on the subject so you don’t get left behind.

Thanks to [Bubsey Ubsey] for the tip.

Continue reading “Face ID Defeated With 3D Printed Mask (Maybe)”

Hackaday Links Column Banner

Hackaday Links: September 17, 2017

BREAKING NEWS: APPLE HAS RELEASED A NEW RECTANGLE. IT IS BETTER THAN THE PREVIOUS RECTANGLE, WHICH WAS A LESSER RECTANGLE. SOME PEOPLE ARE UNHAPPY WITH THE NEW RECTANGLE BECAUSE OF [[CHANGES]]. THE NEW RECTANGLE HAS ANIMATED POO.

Mergers and acquisitions? Not this time. Lattice Semiconductor would have been bought by Canyon Bridge — a private equity firm backed by the Chinese government — for $1.3B. This deal was shut down by the US government because of national security concerns.

[Jan] is the Internet’s expert in doing synths on single chips, and now he has something pretty cool. It’s a breadboard synth with MIDI and CV input. Basically, what we’re looking at is [Jan]’s CVS-01 chip for a DCO, DCF, and DCA), a KL5 chip for an LFO, and an envelope chip. Tie everything together with a two-octave captouch keyboard, and you have a complete synthesizer on a breadboard.

As an aside relating to the above, does anyone know what the cool kids are using for a CV/Gate keyboard controller these days? Modular synths are making a comeback, but it looks like everyone is running a MIDI keyboard into a MIDI-CV converter. It seems like there should be a –simple, cheap– controller with quarter-inch jacks labeled CV and Gate. Any suggestions?

World leaders are tweeting. The Canadian PM is awesome and likes Dark Castle.

Way back in July, Square, the ‘POS terminal on an iPad’ company posted some data on Twitter. Apparently, fidget spinner sales peaked during the last week of May, and were declining through the first few weeks of summer. Is this proof the fidget spinner fad was dead by August? I have an alternate hypothesis: fidget spinner sales are tied to middle schoolers, and sales started dropping at the beginning of summer vacation. We need more data, so if some of you could retweet this, that would be awesome.

Remember [Peter Sripol], the guy building an ultralight in his basement? This is going to be a five- or six-part video build log, and part three came out this week. This video features the installation of the control surfaces, the application of turnbuckles, and hardware that is far too expensive for what it actually is.

A Floppy Drive For Apple’s Pippin

The Pippin was Apple’s first and last foray into gaming consoles. At its heart, the Pippin was a strange ‘multimedia device’ with a CD-ROM, the potential for Internet access, a few neat controllers, and the guts of a very bare-bones PowerPC Macintosh. Think of a cross between a 3DO and WebTV, and you’ll get an idea of what Apple was trying to build here.

The Pippin is rare, and that means the related accessories, ranging from magneto-optical drives to floppy drives, are incredibly hard to come by. Now, one of those peripherals isn’t rare anymore; [Pierre] has cloned the (passive) PCB that allows a Macintosh floppy drive to plug directly into the Pippin.

The expansion capabilities for the Pippin are locked away inside a PCI connector strategically located on the bottom of this set-top box. The official floppy drive accessory injection molded case, a standard Mac floppy drive, and a PCB. After finding one of these rare floppy drive accessories, [Pierre] simply took a meter to all the pins, traced out the circuit, and created a PCB with a PCI connector on one end, and 20-pin connector on the other. The PCB is shared on OSH Park if you want to check this out.

Although recreating this hardware was relatively easy, testing it was not. The first test used the Floppy Emu, a neat device that allows old Macs to read disk images off an SD card. This worked beautifully, but testing it out with a real floppy drive did not. Some disks simply didn’t work, although [Pierre] is chalking that one up to a problem with the USB floppy drive and a Mac running Sierra.

Mini Apple IIe

The Mini Apple IIe That Runs On C.H.I.P.

[Cupcakus]’s mini Apple IIe must surely be a contender for the smallest computer running an Apple II emulator. We’d mentioned it a few months ago in a Links post when it had been posted to a forum along with a few videos of it in action, but now popular YouTube channel, [Tested], has released a video wherein they not only show what’s inside, and interview [Cupcakus] about his trials and tribulations in making it, but also go through the steps of making one of their own. Also, at the time of writing the Links post, [Cupcakus] hadn’t yet announced his detailed GitHub page about it.

This mini Apple IIe runs on a C.H.I.P., a small $9 single board computer, and has a speaker and a TFT LCD display. Input is via a full-sized wireless keyboard. He doesn’t have joysticks working but that was an oversight and having realized how many games require joysticks, he has plans to add support for them. The case is 3D printed from models available on Thingiverse and links are on the GitHub page, along with all other details for making one yourself.

He did have to do some hacking. The video signal from the C.H.I.P. wasn’t available from the pin headers so he had to solder a wire directly to the board itself. The C.H.I.P. requires from 3.3 V to 5 V whereas the display wants 6 V to 12 V. To accommodate both he gets power from a 12 V drone battery and uses a 5 V buck converter for the C.H.I.P. And he had to modify the emulator to be legible on the low resolution of the display. The code for that is also available through the GitHub page.

While he uses the display as the screen for the Apple II emulator, it actually has two video inputs. So just in case he wants to show something on the display from another source, perhaps to watch a video, he’s made the second video input available using a socket in the back.

Want to see all the details for yourself? Check out [Tested]’s video below.

Continue reading “The Mini Apple IIe That Runs On C.H.I.P.”

Hackaday Links: April 16, 2017

Guess what’s going on at the end of the month? The Vintage Computer Festival Southeast is happening April 29th and 30th. The event is being held at the Computer Museum of America and is, by all accounts, a really cool show.

Walk into any package sorting facility or Amazon fulfillment center and you’ll find a maze of conveyor belts, slides, and ramps that move boxes from one point to another. Conveyor belts are so last century, so here’s a fleet of robots.

In 2017, the CITES treaty — an international treaty for the protection of endangered species — changed a lot. While the original treaty protected individual species, in 2017, enforcement of this treaty on tropical hardwoods changed to an entire genus. This is a problem when it comes to rosewood; previously only Dalbergia nigra was covered under CITES, now the entire Dalbergia genus is covered. This sucks for guitar makers, but a Dutch guy is making guitars out of newspaper. We’re probably looking at some sort of micarta thing here, but it sounds acceptable.

Where did Apple’s Spinning Beach Ball of Death come from? 1984, or thereabouts. The ubiquitous Apple ‘wait’ cursor is from the first versions of the Macintosh Toolbox, and it has remained mostly unchanged all this time. This is Apple Wait, a demonstration of this first spinny ball of death. It’s a Raspberry Pi connected to an Apple monochrome monitor that just displays a spinny wait logo. Check out the video.

How do you make strips of RGB LEDs turn a corner? Wire, usually. Here are some corner pieces for WS2812B LED strips. It looks very handy if you’re building a gigantic RGB LED matrix.

SHA2017 is an outdoor hacker conference that’s happening this summer. They’re working on a badge, but they need some help. They’re looking for some funding for their ESP32-powered, touch controller, sunlight-readable ePaper badge. If you have a job that likes to sponsor stuff like this, it’s a worthy cause.