Hackaday Prize Entry: The $50 Raspberry Pi Smartphone

The Hackaday Prize is a challenge to create hardware, and the ZeroPhone is quite possibly the most popular project entered in the Hackaday Prize. What is it? It’s a mobile phone built around the Raspberry Pi Zero that can be assembled for about $50 in parts. Already, it’s a finalist in the Hackaday Prize best product competition, a finalist for the grand prize of $50,000, and one of the most popular projects on Hackaday.io of all time.

We took a look at the ZeroPhone early this year, and while there have been significant advances in this project, the philosophy is still pretty much the same. This is a mobile phone with a numeric keypad and a 128 x 64 pixel OLED display — basically the same user interface as a Nokia brick. The brain of the phone is a Raspberry Pi Zero wrapped in a PCB sandwich, with options for WiFi, Bluetooth, HDMI and audio outputs, a USB port, battery charging, and a ton of GPIOs that include ISM band radios, infrared receivers and transmitters, more flash storage, and anything else you can imagine. Basically, we’re looking at one of those modular, reconfigurable smartphone ideas, using a Raspberry Pi as the brains. Tech journos should be creaming themselves over this. We’re looking forward to [Arsenijs]’ cover story in Wired.

As with any Open Source / DIY cell phone, the big question surrounding the ZeroPhone is the cellular radio. 2G radios are cheap and plentiful, but the infrastructure is either coming down shortly, or already is down. A 3G radio is a must for a minimum viable product, and [Arsenijs] says there are provisions for replacing the 2G radio with a 3G module. Of course, 3G modules aren’t as capital-‘O’-Open as their technological predecessors, but that’s a discussion for another time.

Already the ZeroPhone is a huge success. There’s an actual team working on this project, the ZeroPhone subreddit is bigger than the Hackaday subreddit, there are newsletters, a wiki, and there will be a crowdfunding campaign ‘shortly’. This is one to look out for, and a very worthy project in the running for the 2017 Hackaday Prize.

Best Product Entry: Telescope Control With RDuinoScope

The Hackaday Prize is more than just giving tens of thousands of dollars to hardware hackers. It’s also about funding the next batch of Open Source hardware products. Alongside The Hackaday Prize — the contest where we’re funding hardware that will change the world, — we’re also giving away $30,000 to the project that will best become a product. It’s almost like we’re funding hardware startups here.

[Dessislav Gouzgounov] wanted to build a small piece of hardware — a GoTo for his telescope. This handheld controller would allow him to use software to align the telescope with whatever celestial body he’s checking out.

Many GoTos simply interface with a laptop, but [Dessislav] built a standalone system centered around an Arduino Due and 240×400 touch screen, with GPS, RTC, and Bluetooth under the hood. It works on both hemispheres and contains a database of 250 celestial objects, features different speeds for time-delayed tracking of celestial, lunar, and solar phenomena, and it can work with any stepper-equipped telescope.

We covered [Dessislav]’s previous version of the RDuinoScope, but he’s improved the project considerably with over 2,400 lines of code including a new menu system and added a star atlas showing the location of the sky at which the telescope is currently pointed, among other improvements. The project is open source and you can learn more about it on [Dessislav]’s project page or check out his code on GitHub.

Continue reading “Best Product Entry: Telescope Control With RDuinoScope”

Best Product Entry: A HSDK for Ultrasound Imaging

As an entry into this year’s Best Product portion of the Hackaday Prize, [kelu124] is developing a hardware and software development kit for ultrasound imaging.

Ultrasound is one of the primary tools used in modern diagnostic medicine. Head to the doctor with abdominal pain, and you can bet you’ll be seeing the business end of an ultrasound system. While Ultrasound systems have gotten cheaper, they aren’t something everyone has in the home yet.  [kelu124] is working to change that by building a hardware and software development kit which can be used to explore ultrasound systems. This isn’t [kleu124’s] first rodeo. HSDK builds upon and simplifies Murgen, his first open source ultrasound, and an entry in the 2016 Hackaday prize. [kelu124’s] goal is to “simplify everything, making it more robust and more user-friendly”.

The system is driven by a Raspberry Pi Zero W. A custom carrier board connects the Pi to the pulser block, which sends out the ultrasonic pings, and the analog front end, which receives the reflected signals. The receiver is called Goblin, and is a custom PCB designed [kelu124] designed himself. It uses a variable gain amplifier to bring reflected ultrasound signals up out of the noise.

A system like this would be a boon both to hackers and medical professionals working in the field. Ultrasonics can do more than just imaging. You can decrease healing time with ultrasonics, or even levitate things!

Will it Sell?

Many of us develop things for one of two purposes: to hack something cool, or to sell something cool. When hacking something cool, your target market is yourself, and you already know you’ve made the sale. If your goal is to sell the thing you are making, then a lot more thought and effort is required. You could develop the coolest product in the world, but if your target market is too small, your price is too high, your lead time is too long, or any of a dozen other factors is not quite right, you’ll be spending a lot of time and effort on what will amount to a huge disappointment. The Hackaday Prize Best Product has many great examples which let us study some of these success factors, so let’s take a look. Continue reading “Will it Sell?”

Best Product Entry: Pocket Thermal Camera

One of the entries in the Hackaday Prize Best Product competition is [x-labz]’s pocket thermal imager. It’s more than a prototype, it’s a design conceived to get out into the world and be used by many. Best Product entries are open until July 24th, and with a $30,000 cash prize on the line let’s take a look at some of the things that elevate a project to product status.

Thanks to recent advances in the state of thermal image sensors, a tool that gives you Predator vision is almost a necessity on the modern workbench. The pocket thermal imager will find drafts in your house during winter, will tell you how to cook a steak, figure out what part is shorting out in your latest electronics project, and will tell you how terrible the heated bed is on your 3D printer.

[x-labz]’s thermal camera is based around the FLIR Lepton image sensor, an 80×60 pixel thermal imaging sensor that’s good enough for most uses. This camera is soldered onto a PCB sandwich containing an Atmel SAMD21 microcontroller, full-color OLED display, SD card, and a battery management system.

What we’ve mentioned so far isn’t out of the ordinary for any other entry in the Hackaday Prize. Building something for the Best Product competition is different, though: a lot of thought has to go into the manufacturability and the fit and finish of this device. So far, everything’s looking great for [x-labz]’s camera. There’s a 3D printed case that looks like it could be easily translated into an injection-moldable shell and at least some of the parts of the user interface are unbelievably satisfying. We’re looking forward to seeing the full Bill of Materials and a business plan (a new requirement this year). That’s an area where many hardware designers lack experience; being able to study the examples from Best Product entries will be a welcomed resource.

There’s a world of difference between building a project and building a product, and the entire goal of the Best Product portion of the Hackaday Prize is to reward those people who go the extra mile as aspiring entrepreneurs and show us how that’s done. $50k in cash prizes are set aside for Best Product; $30,000 for the winner as we mentioned before, but there is also $1000 for each of the twenty entries that make it to the finals in this category in addition to some much deserved notoriety from Hackaday’s community of hardware aficionados and early adopters.

Designing your Project to Scale: Crossing the Chasm

Hackaday is all about the neat hacks and the repurposing of old components into new projects, but many people then try to take those projects and turn them into businesses. We’ve seen lots of people offer their stuff as kits and sell them on Tindie, with the rare few going on to develop a consumer electronic product at scale.

The Hackaday Prize 2017 Best Product highlights this journey. “Scale” itself is a vague term, but essentially it means to be able to produce enough to meet market demand. We hope that market demand is roughly 7 billion units, purchasing yearly, but the reality is that it is somewhere between 1 and a few hundred thousand, with very big differences in manufacturing at each order of magnitude. So how do you start with a proof of concept and design your product from the very beginning to be optimized to scale to meet whatever demand you can handle?

Continue reading “Designing your Project to Scale: Crossing the Chasm”

Designing Products With Injection Molding in Mind

3D printing is a technique we’ve all been using for ages at home, or via Shapeways, but if you are designing a product, 3D printing will only get you so far. It’s crude, slow, expensive, and has lots of limitations. While it’s great for the prototyping stage, ultimately products manufactured in volume will be manufactured using another method, and most likely it will be injection molding. Knowing how to design a part for injection molding means you can start prototyping with 3D printing, confident that you’ll be able to move to a mold without major changes to the design.

The 2017 Hackaday Prize includes a $30,000 prize for Best Product as we seek products that not only show a great idea, but are designed for manufacturing and have thought through what it takes to get them into the hands of the users. Some of the entries seem to be keenly aware of the challenges associated with moving from prototyping to production. Here are some examples of best practices when prototyping with future injection molding in mind.

Continue reading “Designing Products With Injection Molding in Mind”