Raspberry Pi Becomes Cycle Exact Commodore Drive Emulator

The Commodore 1541 disk drive is unlike anything you’ll ever see in modern computer hardware. At launch, the 1541 cost almost as much as the Commodore 64 it was attached to ($400, or about $1040 at today’s value). This drive had a CPU, and had its own built-in operating system. Of course, anyone using a Commodore 64 now doesn’t deal with this drive these days — you can buy an SD2IEC for twenty dollars and load all your C64 games off an SD card. If you’re cheap, there’s always the tape drive interface and a ten dollar Apple Lightning to 3.5mm headphone adapter.

But the SD2IEC isn’t compatible with everything, and hacking something together using the tape drive doesn’t have the panache required of serious Commodoring. What’s really needed is a cycle-accurate emulation of the 1541 disk drive, emulating the 6502 CPU and the two 6522 VIAs in this ancient disk drive. The Raspberry Pi comes to the rescue. [Steve White] created the Pi1541, an emulation of the Commodore 1541 disk drive that runs on the Raspberry Pi 3B.

Pi1541 is a complete emulation of the 6502 and two 6522s found inside the Commodore 1541 disk drive. It runs the same code the disk drive does, and supports all the fast loaders, demos, and copy protected original disk images that can be used with an original drive.

The only hardware required to turn a Raspberry Pi 3 into a 1541 are a few transistors in the form of a bi-directional logic level shifter, and a plug for a six-pin serial port cable. This can easily be constructed out of some Sparkfun, Adafruit, Amazon, or AliExpress parts, although we suspect anyone could whip up a Raspberry Pi hat with the same circuit in under an hour. The binaries necessary to run Pi1541 on the Raspberry Pi are available on [Steve]’s website, and he’ll be releasing the source soon.

This is a great project for the retrocomputing scene, although there is one slight drawback. Pi1541 requires a Raspberry Pi 3, and doesn’t work on the Raspberry Pi Zero. That would be an amazing bit of software, as ten dollars in parts could serve as a complete emulation of a Commodore disk drive. That said, you’re still likely to be under $50 in parts and you’re not going to find a better drive emulator around.

Continue reading “Raspberry Pi Becomes Cycle Exact Commodore Drive Emulator”

Emulating A Complete Commodore 64

When the Commodore 64 was released in 1982, it was a masterpiece of engineering. It had capabilities far outstripping other home computers, and that was all due to two fancy chips inside the C64. The VIC-II, the video chip for the C64, had sprites and scrolling, all stuffed into a single bit of silicon. The SID chip was a complete synthesizer on a chip. These bits of silicon made the C64 the best selling computer of all time, but have also stymied efforts to emulate a complete C64 system on a microcontroller.

[Frank Bösing] has just managed to emulate an entire C64 on a Teensy 3.6. The Teensy uses an exceptionally powerful microcontroller, but this is a labor of love and code.

The inspiration for this project comes from a reverse-engineered SID chip that was ported to the Teensy 3.2. The SID chip is the make it or break it feature of any C64 emulation, but the Teensy 3.2 didn’t have enough RAM for the most recent versions of reSID. With the release of the Teensy 3.6, [Frank] figured the increased amount of RAM would allow a complete C64 system, so he built it.

The new C64 emulator uses a Teensy 3.6, with a small add-on ‘shield’ (or whetever we’re calling them) to provide connectors for joysticks and the Commodore IEC bus. There’s audio out, support for USB keyboards, and support for an IL9341 SPI display or a regular ‘ol VGA display.

The entire development of this Commodore emulator has been documented over on the PJRC forums, and all the code is over on GitHub. It’s a fantastic piece of work, and as the video (below) shows, this is a real Commodore 64 that fits in your pocket.

Continue reading “Emulating A Complete Commodore 64”

Converting Power Supplies For Antique Computers

Just because something is “never used” doesn’t mean it’s good. [Inkoo Vintage Computing] learned that lesson while trying to repair an Amiga 500 and finding parts online that were claimed to be “new” in that they were old stock that had never been used. The problem was that in the last 30 years the capacitors had dried out, rendering these parts essentially worthless. The solution, though, was to adapt a modern PSU for use on the old equipment.

The first hurdle to getting this machine running again was finding the connector for the power supply. The parts seemed to have vanished, with some people making their own from scratch. But after considering the problem for a minute longer they realized that another Commodore machine used the same parts, and were able to source a proper cable.

Many more parts had to be sourced to get the power supply operational, but these were not as hard to come across. After some dedicated work with the soldering iron, the power supply was put to use running the old Amiga. Asture readers will know that [Inkoo Vintage Computing] aren’t strangers to the Amiga. They recently were featured with a nondestructive memory module hack that suffered from the same parts sourcing issues that this modification had, but also came out wonderfully in the end.

“The Commodore Story” Documentary Premieres Today

What is it about a computer that was introduced 36 years ago by a company that would be defunct 12 years later that engenders such passion that people still collect it to this day? We’re talking about the Commodore 64, of course, the iconic 8-bit wonder that along with the other offerings from Commodore International served as the first real computer to millions of us.

There’s more to the passion that Commodore aficionados exhibit than just plain nostalgia, though, and a new documentary film, The Commodore Story, seeks to explore both the meteoric rise and fall of Commodore International. Judging from the official trailer below, this is a film anyone with the slightest interest in Commodore is not going to want to miss.

It will of course dive into the story of how the C64 came to be the best selling computer in history. But Commodore was far from a one-trick pony. The film traces the history of all the Commodore machines, from the PET computers right through to the Amiga. There are interviews with the key players, too, including our own Bil Herd. Bil was a hardware engineer at Commodore, designing several machines while there. He has shared some of these stories here on Hackaday, including the development of the C128  (successor to the C64) and making the C64 speak.

We can’t wait to watch this new documentary and luckily we won’t have to. It’s set to start streaming on Netflix, Amazon, and iTunes today, so pop up some popcorn and settle in for a two-hour ride through computer history but right now we’re unable to get firm dates on when. However, those of you in the Mountain View area have an even better opportunity this evening.

The Commodore Story will be premiered live at 6:30pm PST at the Computer History Museum. Grab your tickets to the premiere and a Q&A session with Bil Herd, Leonard Tramiel, and Hedley Davis.

Continue reading ““The Commodore Story” Documentary Premieres Today”

Amiga Gets A PS/2 Keyboard Port

Name any retrocomputer — Apple II, Sinclair, even TRS-80s — and you’ll find a community that’s deeply committed to keeping it alive and kicking. It’s hard to say which platform has the most rabid fans, but we’d guess Commodore is right up there, and the Amiga aficionados seem particularly devoted. Which is where this Amiga PS/2 mouse port comes from.

The Amiga was a machine that was so far ahead of its time that people just didn’t get it. It was a true multimedia machine before multimedia was even a thing, capable of sound and graphics that hold up pretty well to this day. From the looks of [jtsiomb]’s workstation, he’s still putting his Amiga to good use, albeit with an inconvenient amount of cable-swapping each time he needs to use it. The remedy this, [jtsiomb] put together an emulator that translates scancodes from an external PS/2 keyboard into Amiga keyboard signals. Embedded inside the Amiga case where it can intercept the internal keyboard connector, the emulator is an ATmega168 that does a brute-force translation by way of lookup tables. A switch on the back allows him to choose the internal keyboard or his PS/2 keyboard via a KVM switch.

Are Amigas really still relevant? As of two years ago, one was still running an HVAC system for a school. We’re not sure that’s a testament to the machine or more a case of bureaucratic inertia, but it’s pretty impressive either way.

[via r/electronics]

Friday Hack Chat: Electronics Design And Naming A Puppy

For one reason or another, Hackaday has an extended family of ridiculously capable contributors. One of the most illustrious is [Bil Herd], Commodore refugee, electronic engineer, medic, and all-around awesome guy. He’ll be joining us over on Hackaday.io this Friday for a Hack Chat on Electronics Design.

This Friday, we’re hosting a Hack Chat with [Bil]. If you want to talk Commodore, this is the guy. If you want to talk about PLAs and programmable digital logic, this is the guy. If you want to know how to build a system from scratch in just a few months, [Bil]’s your man. [Bil] has decades of experience and his design work was produced by the millions. You’ll rarely come across someone with as much experience, and he’ll be in our Hack Chat this Friday.

[Bil] has a long career in electronics design, beginning with fixing CB radios and televisions back when fixing TVs was still a thing. Eventually, he worked his way up the engineering ladder at Commodore Business Machines where he designed the Commodore TED machines and the amazing Commodore 128.

After surviving Commodore, [Bil] has worked at a trauma center in Camden, NJ, flown with medics in the Army, and eventually came over to Hackaday where he produces videos from subjects ranging from direct digital synthesis, programmable logic, active filters, and how CMOS actually works. Basically, if it involves electronics, [Bil] knows what’s up.

Oh, as an added bonus, we get to name a puppy this week. [Bil] got a new puppy and it needs a name. Send in your suggestions!

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This hack chat will take place at noon Pacific time on Friday, June 16th. Confused about where and when ‘noon’ is? Here’s a time and date converter!

Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about

Hackaday Prize Entry: The FPGA Commodore

The history of Commodore 8-bit computers ends with a fantastically powerful, revolutionary, and extraordinarily collectible device. The Commodore 65 was the chicken lip’ last-ditch effort to squeeze every last bit out of the legacy of the Commodore 64. Basically, it was a rework of a 10-year-old design, adding advanced features from the Amiga, but still retaining backwards compatibility. Only 200 prototypes were produced, and when these things hit the auction block, they can fetch as much as an original Apple I.

For their Hackaday Prize entry, resident hackaday.io FPGA wizard [Antti Lukats] and a team of retrocomputing enthusiasts are remaking the Commodore 65. Finally, the ultimate Commodore 8-bit will be available to all. Not only is this going to be a perfect replica of what is arguably the most desirable 8-bit computer of all time, it’s going to have new features like HDMI, Ethernet, and connections for a lot of FPGA I/O pins.

The PCB for this project is designed to fit inside the original case and includes an Artix A200T FPGA right in the middle of the board. HDMI and VGA connectors fill the edges of the board, there’s a connector for a floppy disk, and the serial port, cartridge slot, and DE9 joystick connectors are still present.

You can check out an interview from the Mega65 team below. It’s in German, but Google auto-generated and auto-translated captions actually work really, really well.

Continue reading “Hackaday Prize Entry: The FPGA Commodore”