Swarm of Servos Plays this Robotic Glockenspiel

It’s the happiest sounding instrument in the marching band, and it’s got the best name to boot. It’s the glockenspiel, and if this robotic glockenspiel has anything to say about it, the days of human glockenspielists are numbered.

In its present prototype form, [Averton Engineering]’s “Spielatron” looks a little like something from a carousel calliope or an animatronic pizza restaurant band. Using a cast-off glockenspiel from a school music room as a base, the Spielatron uses four mallets to play all the notes. Each key is struck by a mallet secured to a base made of two servos. For lack of more descriptive mallet terminology, these servos provide pan and tilt so the mallet can strike the proper keys. The video below shows the Spielatron’s first recital.

An Arduino runs the servos and a MIDI interface; unfortunately, this version can’t play chords and is a little limited on note length, but upgrades are on the way. We’ve seen a robotic glockenspiel before with a similar design that might have some ideas for increasing performance. But if you’re looking for a more sublime sound, check out this dry ice-powered wind chime.

Continue reading “Swarm of Servos Plays this Robotic Glockenspiel”

Music-Loving BeagleBone

Robotic control can get very complicated when multiple actuators need to work in coordination with each other. A simple robotic arm will require each joint to be controlled in sequence to attain a particular position. The BeagleBone Blue comes armed with motor drivers, sensor inputs, and wireless and is built for robotics.

[Andy] has prepared a musical robot called the BeagleBone Blue Electro-Mechanical Glockenspiel using the single board computer. The hardware consists of eight servo motors each with a mallet stick attached to them. The motors themselves are mounted on 3D-printed brackets allowing them to be mounted at the correct height. The servos connect to the main board for position control, however, an external supply had to be used to supply the necessary current to all the motors.

The software side has programs to translate notes into servo positions as well as connect to a web brower via MQTT and websockets. The basic user interface is simple and has buttons to connect to and send the keystrokes. The code, as well as the OpenSCAD designs, can be downloaded from GitHub. Check out the video below for a demo.

This project could be extended to an autonomous robot that plays tunes from the Internet. We are reminded of the rock throwing glockenspiel which was pretty cool and hope there are some permutations to come from both. Continue reading “Music-Loving BeagleBone”

Robotic Glockenspiel Crunches “Popcorn”

[James] sent us a video of his latest creation: a robotic glockenspiel that’s currently set up to play “Popcorn”. It uses eight servos to drive mallets that strike the tone bars with fast, crisp movements. The servos are driven with a 16-channel I²C servo driver and MIDI shield, which are in turn controlled with an Arduino Uno. The previous incarnation of his autoglockenspiel employed solenoids, dowels, and elastic bands.

[Gershon Kingsley]’s 1969 composition for synthesizer “Popcorn” has been covered by many artists over the years, though perhaps the most popular cut was [Hot Butter]’s 1972 release. Check it out after the break, and dig that lovely cable management. We’d love to see [James]’s autoglockenspiel play “Flight of the Bumblebee” next.

If you’re hungry for more electro-acoustic creations, have a gander at [Aaron Sherwood]’s Magnetophone.

Continue reading “Robotic Glockenspiel Crunches “Popcorn””

Glockentar: A Guitar + Glockenspiel Mashup

This unique electronic instrument combines a chopped up guitar and a hacked apart glockenspiel with an Arduino. [Aaron]’s Glockentar consists of guitar hardware and glockenspiel keys mounted to a wood body. Solenoids placed above the keys actuate metal rods to play a note.

Under the hood, an Arduino connects the pieces. The conductive pick closes a circuit, which is a digital input into the Arduino. This actuates the corresponding solenoid to play the glockenspiel key, and sends a character to a computer over serial.

On the computer, an openFrameworks based program creates lighting that is projected onto each string. MadMapper is used for projection mapping, which maps the openFrameworks output to each string. Video is passed between applications using the Syphon framework.

[Aaron] has provided a write up that goes into details, including the Arduino and openFrameworks source for the project. There’s also a video overview and demo of the Glockentar after the break.

Continue reading “Glockentar: A Guitar + Glockenspiel Mashup”