Well-Loved Toy Turned Into Robotic Glockenspiel

If there’s a happier word ever imported into the English language than “Glockenspiel”, we’re not sure what it is. And controlling said instrument with a bunch of servos and an Arduino makes us just as happy.

When [Leon van den Beukel] found a toy glockenspiel in a thrift store, he knew what had to be done – Arduinofy it. His first attempt was a single hammer on a pair of gimballed servos, which worked except for the poor sound quality coming from the well-loved toy. The fact that only one note at a time was possible was probably the inspiration for version two, which saw the tone bars removed from the original base, cleaned of their somewhat garish paint, and affixed to a new soundboard. The improved instrument was then outfitted with eight servos, one for each note, each with a 3D-printed arm and wooden mallet. An Arduino runs the servos, and an Android app controls the instrument via Bluetooth, because who doesn’t want to control an electronic glockenspiel with a smartphone app? The video below shows that it works pretty well, even if a few notes need some adjustment. And we don’t even find the servo noise that distracting.

True, we’ve featured somewhat more accomplished robotic glockenspielists before, but this build’s simplicity has a charm of its own.

Continue reading “Well-Loved Toy Turned Into Robotic Glockenspiel”

UnMaker 2.0 Is Wile E Coyote’s Dead Blow Hammer

Hammers! They’re good for knocking in nails, breaking things apart, and generally smashing up the joint, if you’re in such a mood. Typically, they’re made of iron or steel and come in a variety of sizes depending on the purpose — from tiny chipping hammers for delicate sculpture work, to the heavy-duty sledge for tearing through building materials. But what if you built your own comically large mallet? Enter UnMaker 2.0.

The hammer receiving an eye-catching lick of paint.

Basically, it’s a really big hammer. It’s vaguely reminiscent of a dead blow type design, in that it consists of a moderately shock-absorbing outer shell filled with heavier material. In this case, steel ball bearings find a home inside the shell made out of maple and with a traditional tapered handle. In many ways it’s quite a typical build — other than the fact of its gigantic size and 34-pound head weight. Both of these make it a shoe-in for the ACME catalog. That roadrunner won’t know what hit him.

[Kevin] reports that it is not so much “swung” as it is “raised and allowed to drop”, due to its impressive weight. Clearly, it packs a punch. It’s a solid follow-on from the group’s former work – a truly gigantic utility knife.

Blacksmith’s Junkyard Power Hammer Packs a Punch

Any way you look at it, blacksmithing is a punishing trade. Heavy tools, a red-hot forge, flying sparks, and searing metal all exact a toll on the smith’s body unless precautions are taken. After proper safety equipment and good training, a blacksmith may want to invest is power hammer to replace at least some of the heavy hammer work needed to shape hot metal.

Power hammers aren’t cheap, though, which is why [70kirkster] built one from an old engine block. You’ve got to admire the junkyard feel of this thing; it’s almost nothing but scrap. The engine block is a straight-6 from an old Ford pickup stripped of everything but the crankshaft and one piston. An electric motor spins the crankshaft and moves the hammer against the anvil through connecting rods and a trip arm fashioned from a trailer leaf spring. Everything looks super solid and the hammer hits hard; the videos below tell the tale of the build and show the hammer in action. Not bad for $100 out-of-pocket.

Blacksmithing is one of those dark arts that really deserves to have more adherents. The barriers to entry can be high, but the rewards are great. Looking to get started on the cheap? Then check out [Bil Herd]’s guide to hacking together a backyard smithy.

Continue reading “Blacksmith’s Junkyard Power Hammer Packs a Punch”

Good in a Pinch: The Physics of Crimped Connections

I had a friend who was an electronics assembly tech for a big defense contractor. He was a production floor guy who had a chip on his shoulder for the engineers with their fancy book-learnin’ who couldn’t figure out the simplest problems. He claimed that one assembly wasn’t passing QC and a bunch of the guys in ties couldn’t figure it out. He sidled up to assess the situation and delivered his two-word diagnosis: “Bad crimp.” The dodgy connector was re-worked and the assembly passed, much to the chagrin of the guys in the short-sleeved shirts.

Aside from the object lesson in experience sometimes trumping education, I always wondered about that “bad crimp” proclamation. What could go wrong with a crimp to so subtly futz with a circuit that engineers were baffled? How is it that we can rely on such a simple technology to wire up so much of the modern world? What exactly is going on inside a crimped connection anyway?

Continue reading “Good in a Pinch: The Physics of Crimped Connections”

Review: Hammer-Installed Solderless Raspberry Pi Pin Headers

A few days ago we reported on a new product for owners of the Raspberry Pi Zero, a set of solderless header pins that had a novel installation method involving a hammer. We were skeptical that they would provide a good contact, and preferred to stick with the tried-and-trusted soldered pins. It seems a lot of you agreed, and the comments section of the post became a little boisterous. Pimoroni, the originator of the product, came in for a lot of flak, with which to give them their due they engaged with good humor.

It’s obvious this was a controversial product, and maybe the Hackaday verdict had been a little summary based on the hammer aspect of the story. So to get further into what all the fuss had been about I ordered a Pi Zero and the solderless pin kit to try for ourselves.

Continue reading “Review: Hammer-Installed Solderless Raspberry Pi Pin Headers”

Give Your Raspberry Pi A Good Hammering

One of the features of the Raspberry Pi Zero is that it arrives with no GPIO header pins installed. The missing pins reduce the price of the little computer, as well as its shipping volume. A task facing most new Pi Zero owners has therefore been to solder a set of pins into the holes, and indeed many suppliers will sell you the pins alongside your new Zero.

The British Pi accessories supplier Pimoroni think they may have a solution to this problem, with a set of solderless pins that the user is expected to fit by tapping both pins and Pi with a hammer. Each pin is designed to deform under pressure, and grip the through-plated walls of the hole in the PCB. In reality they are push-fit pins designed to be fitted with a press or a special tool, but since the average Zero buyer will have neither they supply a small laser-cut jig and give instructions to tap carefully with a pin hammer or similar. They have a demonstration as part of their regular Bilge Tank podcast, which we’ve included below the break.

Pins like these can be quite reliable when installed with the proper tools. They are often used in military and aerospace systems. In this case though, we expect that a chorus of you will be limbering up to comment that it would be far better to solder the connector, and we can’t help agreeing with you. Of course this product isn’t really marketed at Hackaday readers. Instead, the target market of a board like the Zero are children. For them soldering may well be a step too far. We can’t help wondering though whether hammer installation will deliver a reliable enough contact, and whether we’ll see a horde of youngsters whose Pi HATs don’t work due to dodgy connectors. Aside from the ones who’ve broken their Zeros with hammering that was a bit enthusiastic, that is.

Continue reading “Give Your Raspberry Pi A Good Hammering”

A Machine Shop in A Toolbox: Just Add Time

You don’t need any fancy tools. A CNC machine is nice. A 3D printer can help. Laser cutters are just great. However, when it comes to actually making something, none of this is exactly necessary. With a basic set of hand tools and a few simple power tools, most of which can be picked up for a pittance, many things of surprising complexity, precision, and quality can be made.

Not as pretty, but worked just the same.
Not as pretty, but worked just the same.

A while back I was working on a ring light for my 3D printer. I already had a collection of LEDs, as all hackers are weak for a five-dollar assortment box. So I got on my CAD software of choice and modeled out a ring that I was going to laser cut out of plywood. It would have holes for each of the LEDs. To get a file ready for laser cutting ook around ten minutes. I started to get ready to leave the house and do the ten minute drive to the hackerspace, the ten minutes firing up and using the laser cutter (assuming it wasn’t occupied) and the drive back. It suddenly occurred to me that I was being very silly. I pulled out a sheet of plywood. Drew three circles on it with a compass and subdivided the circle. Under ten minutes of work with basic layout tools, a power drill, and a coping saw and I had the part. This was versus the 40 minutes it would have taken me to fire up the laser cutter.

Continue reading “A Machine Shop in A Toolbox: Just Add Time”