What’s this? News about robot dogs comes out, and there’s no video of the bots busting a move on the dance floor? Nope — it looks like quadruped robots are finally going to work for real as “ground drones” are being deployed to patrol Cape Canaveral. Rather than the familiar and friendly Boston Dynamics “Big Dog” robot, the US Space Force went with Ghost Robotics Vision 60 Q-UGVs, or “quadruped unmanned ground vehicles.” The bots share the same basic layout as Big Dog but have a decidedly more robust appearance, and are somehow more sinister. The dogs are IP67-rated for all-weather use, and will be deployed for “damage assessments and patrols,” whatever that means. Although since this is the same dog that has had a gun mounted to it, we’d be careful not to stray too far from the tours at Kennedy Space Center.
hackaday links312 Articles
Hackaday Links: August 7, 2022
If you ever needed proof that class-action lawsuits are a good deal only for the lawyers, look no further than the news that Tim Hortons will settle a data-tracking suit with a doughnut and a coffee. For those of you who are not in Canada or Canada-adjacent, “Timmy’s” is a chain of restaurants that are kind of the love child of a McDonald’s and a Dunkin Donut shop. An investigation into the chain’s app a couple of years ago revealed that customer location data was being logged silently, even when they were not using the app, and even far, far away from the nearest Tim Hortons. The chain is proposing to settle with class members to the tune of a coupon good for one free hot beverage and one baked good, in total valuing a whopping $8.68. The lawyers, on the other hand, will be pulling in $1.5 million plus taxes. There’s no word if they are taking that in cash or as 172,811 coffees and doughnuts, but we think we can guess.
Hackaday Links: July 31, 2022
Don’t look up! As of the time of this writing, there’s a decent chance that a Chinese Long March 5B booster has already completed its uncontrolled return to Earth, hopefully safely. The reentry prediction was continually tweaked over the last week or so, until the consensus closed in on 30 Jul 2022 at 17:08 UTC, give or take an hour either way. That two-hour window makes for a LOT of uncertainty about where the 25-ton piece of space debris will end up. Given the last prediction by The Aerospace Corporation, the likely surface paths cover a lot of open ocean, with only parts of Mexico and South America potentially in the crosshairs, along with parts of Indonesia. It’s expected that most of the material in the massive booster will burn up in the atmosphere, but with the size of the thing, even 20% making it to the ground could be catastrophic, as it nearly was in 2020.
[Update: US Space Command confirms that the booster splashed down in the Indian Ocean region at 16:45 UTC. No word yet on how much debris survived, or if any populated areas were impacted.]
Good news, everyone — thanks to 3D printing, we now know the maximum height of a dive into water that the average human can perform without injury. And it’s surprisingly small — 8 meters for head first, 12 meters if you break the water with your hands first, and 15 meters feet first. Bear in mind this is for the average person; the record for surviving a foot-first dive is almost 60 meters, but that was by a trained diver. Researchers from Cornell came up with these numbers by printing models of human divers in various poses, fitting them with accelerometers, and comparing the readings they got with known figures for deceleration injuries. There was no mention of the maximum survivable belly flop, but based on first-hand anecdotal experience, we’d say it’s not much more than a meter.
Humans have done a lot of spacefaring in the last sixty years or so, but almost all of it has been either in low Earth orbit or as flybys of our neighbors in the Sol system. Sure we’ve landed plenty of probes, but mostly on the Moon, Mars, and a few lucky asteroids. And Venus, which is sometimes easy to forget. We were reminded of that fact by this cool video of the 1982 Soviet landing of Venera 14, one of only a few attempts to land on our so-called sister planet. The video shows the few photographs Venera 14 managed to take before being destroyed by the heat and pressure on Venus, but the real treat is the sound recording the probe managed to make. Venera 14 captured the sounds of its own operations on the Venusian surface, including what sounds like a pneumatic drill being used to sample the regolith. It also captured, as the narrator put it, “the gentle blow of the Venusian wind” — as gentle as ultra-dense carbon dioxide hot enough to melt lead can be, anyway.
Hackaday Links: July 24, 2022
OK, maybe that won’t buff right out. NASA has released a more detailed analysis of the damage suffered by the James Webb Space Telescope in a run-in with a micrometeoroid, and has deemed the damage “uncorrectable”. Not that any damage to JWST is correctable, at least in the sense that the Hubble Space Telescope was able to be fitted with optics to fix its precisely-yet-inaccurately-ground main mirror. JWST is far too remote for a service call, so correctability in this case refers to a combination of what can be accomplished by tweaking the shape and position of the affected mirror segment, and what can be taken care of with image processing. The damage to segment C3, as well as damage to the other segments in a total of six collisions in the half year Webb has been on station, are assessed via “wavefront sensing”, which looks at how out of phase the light coming from each mirror segment is. The damage sounds bad, and it certainly must hurt for the techs and engineers who so lovingly and painstakingly built the thing to see it dinged up already, but in the long run, this damage shouldn’t hamper Webb’s long-term science goals.
In other space news, we hear that the Perseverance rover has taken its first chunk out of the ancient river delta in Jezero Crater. The rover has been poking around looking for something interesting to sample, but everything it tried out with its abrading tool was either too brittle, too hard to get at, or scientifically dull. Eventually the rover found a good spot to drill, and managed to bring up a 6.7-cm core sample. This makes the tenth core sample collected overall, and the first from the delta area, which is thought to have the best chance to contain evidence of ancient Martian life.
Closer to home, we’ve all likely heard of robotic surgery, but the image that conjures up doesn’t really comport with reality. Robot-assisted surgery is probably a better term, since surgical robots are generally just ultra-precise remote manipulators that are guided by a skilled surgeon. But if a study on surgery robot performance is any indication, the days of human surgeons might be numbered. The study compared accuracy and speed of both a human surgeon controlling a standard Da Vinci surgical robot and an autonomous version of the robot alone, using a depth camera for sensing. Using a standard surgical skills test, the autonomous system matched the human surgeons in terms of failures — thankfully, no “oopsies” for either — but bested the humans in speed and positional accuracy. It’ll probably be a while before fully autonomous surgeons are a thing, but we wouldn’t be betting against it in the long run.
Most readers will no doubt have heard the exciting news that Supercon will be back this year as an in-person event! Make sure you set aside the first weekend in November to make the pilgrimage to Pasadena — it’ll be great seeing everyone again after the long absence. But if you just can’t wait till November for an IRL con, consider dropping by SCALE 19X, coming up this week in Los Angeles. The Southern California Linux Expo is being held July 28 through 31, and features a ton of speakers, including a keynote by Vint Cerf. Hackaday readers can save 50% on tickets with promo code HACK.
And finally, as a lover of Easter eggs of all kinds, but specifically of the hidden message in software variety, we appreciated this ode to the Easter egg, the embedded artistry that has served as a creative outlet for programmers over the years. The article lists a few great examples of the art form, along with explaining why they’re actually important artifacts of the tech world and what they’re good for. We tried out a few of the ones listed in the article that we hadn’t heard of before; some hits, some misses, but they’re all appreciated. Well, most of them — the corporate rah-rah kind can bugger straight off as far as we’re concerned.
Hackaday Links: July 17, 2022

The folks at NASA are taking a well-deserved victory lap this week after the splashy reveal of the first scientific images from the James Webb Space Telescope. As we expected, the first public release included a lot of comparisons to images obtained from Hubble, as the general public understandably sees Webb as the successor to the venerable space telescope, now in its third decade of service. So for a “let’s see what this baby can do” image, they turned Webb loose on a tiny patch of sky in the southern hemisphere containing galactic cluster SMACS 0723, and sent back images and spectroscopic data from galaxies up to 13 billion light years away. There are plenty of analyses of Webb’s deep field and the other images in the first release, but we particularly liked the takes by both Anton Petrov and Dr. Becky. They both talk about the cooler scientific aspects of these images, and how Webb is much more than just a $10 billion desktop image generator.
Hackaday Links: July 10, 2022
We always like to call out a commercial success stemming from projects that got their start on Hackaday.io, and so we’re proud to announce the release of MAKE: Calculus by Joan Horvath and Rich Cameron, a book that takes a decidedly different approach to teaching calculus than traditional courses. Geared to makers and hackers, who generally tend to have a visual style of learning, the book makes heavy use of 3D-printed models to illustrate the relationships between functions. The project started five years ago as a 2017 Hackaday Prize entry, and resulted in a talk at the 2019 Supercon. Their book is now available for preorder, and might be a great way to reacquaint themselves with calc, or perhaps even to learn it for the first time. Continue reading “Hackaday Links: July 10, 2022”
Hackaday Links: July 3, 2022
Looks like we might have been a bit premature in our dismissal last week of the Sun’s potential for throwing a temper tantrum, as that’s exactly what happened when a G1 geomagnetic storm hit the planet early last week. To be fair, the storm was very minor — aurora visible down to the latitude of Calgary isn’t terribly unusual — but the odd thing about this storm was that it sort of snuck up on us. Solar scientists first thought it was a coronal mass ejection (CME), possibly related to the “monster sunspot” that had rapidly tripled in size and was being hyped up as some kind of planet killer. But it appears this sneak attack came from another, less-studied phenomenon, a co-rotating interaction region, or CIR. These sound a bit like eddy currents in the solar wind, which can bunch up plasma that can suddenly burst forth from the sun, all without showing the usually telltale sunspots.
Then again, even people who study the Sun for a living don’t always seem to agree on what’s going on up there. Back at the beginning of Solar Cycle 25, NASA and NOAA, the National Oceanic and Atmospheric Administration, were calling for a relatively weak showing during our star’s eleven-year cycle, as recorded by the number of sunspots observed. But another model, developed by heliophysicists at the U.S. National Center for Atmospheric Research, predicted that Solar Cycle 25 could be among the strongest ever recorded. And so far, it looks like the latter group might be right. Where the NASA/NOAA model called for 37 sunspots in May of 2022, for example, the Sun actually threw up 97 — much more in line with what the NCAR model predicted. If the trend holds, the peak of the eleven-year cycle in April of 2025 might see over 200 sunspots a month.
So, good news and bad news from the cryptocurrency world lately. The bad news is that cryptocurrency markets are crashing, with the flagship Bitcoin falling from its high of around $67,000 down to $20,000 or so, and looking like it might fall even further. But the good news is that’s put a bit of a crimp in the demand for NVIDIA graphics cards, as the economics of turning electricity into hashes starts to look a little less attractive. So if you’re trying to upgrade your gaming rig, that means there’ll soon be a glut of GPUs, right? Not so fast, maybe: at least one analyst has a different view, based mainly on the distribution of AMD and NVIDIA GPU chips in the market as well as how much revenue they each draw from crypto rather than from traditional uses of the chips. It’s important mainly for investors, so it doesn’t really matter to you if you’re just looking for a graphics card on the cheap.
Speaking of businesses, things are not looking too good for MakerGear. According to a banner announcement on their website, the supplier of 3D printers, parts, and accessories is scaling back operations, to the point where everything is being sold on an “as-is” basis with no returns. In a long post on “The Future of MakerGear,” founder and CEO Rick Pollack says the problem basically boils down to supply chain and COVID issues — they can’t get the parts they need to make printers. And so the company is looking for a buyer. We find this sad but understandable, and wish Rick and everyone at MakerGear the best of luck as they try to keep the lights on.
And finally, if there’s one thing Elon Musk is good at, it’s keeping his many businesses in the public eye. And so it is this week with SpaceX, which is recruiting Starlink customers to write nasty-grams to the Federal Communications Commission regarding Dish Network’s plan to gobble up a bunch of spectrum in the 12-GHz band for their 5G expansion plans. The 3,000 or so newly minted experts on spectrum allocation wrote to tell FCC commissioners how much Dish sucks, and how much they love and depend on Starlink. It looks like they may have a point — Starlink uses the lowest part of the Ku band (12 GHz – 18 GHz) for data downlinks to user terminals, along with big chunks of about half a dozen other bands. It’ll be interesting to watch this one play out.
