Pico Space Balloon Circumnavigates The Globe, Twice

We’ve reported on “space” balloons before. Heck, some of us have even launched a few. Usually they go way up in the air, take some cool pictures, and land within driving (and retrieving) distance the same afternoon. You get often amazing photos and bragging rights that you took them for the low, low price of a really big helium balloon and a fill.

But what if you shrunk everything down? Over the last few years, [Andy, VK3YT] has been launching ever smaller and lighter balloons with very low power ham radio payloads. So no camera and no photos, but the payback is that he’s launching payloads that weigh around thirteen grams complete with GPS, radio, solar cell, and batteries. They can stay up for weeks and go really far. We’d love to see some construction details beyond the minimalistic “Solar powered party balloon, 25mW TX”. But that about sums it up.

Continue reading “Pico Space Balloon Circumnavigates The Globe, Twice”

drawing of quadcopter in space

Ask Hackaday: Quadcopter In Near Space?

Your mission, should you choose to accept it, is to send a quadcopter to near space and return it safely to the Earth. Getting it there is not that difficult. In fact, you can get pretty much anything you want to near space with a high altitude weather balloon. Getting it back on the ground in one piece is a whole other ballgame.

Why does someone need to do this? Well, it appears the ESA’s StarTiger team is taking a card out of NASA’s book and wants to use a Sky Crane to soft land a rover on Mars. But instead of using rockets to hold the crane steady in the Martian sky, they want to use…you guessed it, a quadcopter. They’re calling it the Dropter.

quadcopter on mars

At first glance, there seems to be a lot wrong with this approach. The atmosphere on Mars is about 100 times less dense than the Earth’s atmosphere at sea level. How do props operate in these conditions? Testing would need to be done of course, and the Earth’s upper atmosphere is the perfect place to carry out such testing. At 100,000 feet, the density of the stratosphere is about the same as that of the Martian surface atmosphere. AND 100,000 feet is prime high altitude balloon territory.  Not to mention the gravity on Mars is about 38% of Earth’s gravity, meaning a 5.5 pound model on Earth could accurately represent a 15 pound model on Mars.

With all of these facts taken into consideration, one can conclude that realistic testing of a scale model Martian quadcopter is within the grasp of the hacker community. We’ve seen some work on high altitude drones before, but never a quadcopter.

Now it’s your turn to do something no one has ever done before. Think you got what it takes to pull such a project off? Let us know what your approach to the challenge would be in the comments.

Continue reading “Ask Hackaday: Quadcopter In Near Space?”

Global Space Balloon Challenge

Looking for a reason to put up a balloon and payload into near-space? Not that one’s necessary, but the Global Space Balloon Challenge has got a variety of good reasons for you to do so, in the form of prizes and swag from their sponsors. Go for highest altitude, best photograph, longest ground track, best on-board science payload, or a bunch more. Have a look through the gallery to check out last year’s winners, including teams that dropped a 3ft paper airplane or floated an R2D2 replica.

Basically all you need to do is register on their website and then go fly a high-altitude balloon between April 10th and 27th. Last year 60 teams took part, and this year they’ve already got 90 teams from 31 countries.

And if you’re just getting into the (hobby? sport?) of high-altitude ballooning, be sure to check out their tutorials and forum. Of course Hackaday has been covering folks’ near-space balloon efforts for a while now too, so you’ve got plenty of reading.

So what are you waiting for? Helium’s not getting any cheaper and spring is on its way. Start planning your balloon launch now.

High Altitude Balloon Keeps Going

Here’s a post from the AMSAT-UK high altitude balloon blog. It’s a great story about a balloon cruising at about 12km above the Earth completing its sixth circumnavigation of the planet. That post is from October 4th, and two weeks later the balloon is still going strong. Right now it’s over the Baltic heading into Russia with no sign of stopping or popping any time soon.

globeThe balloon was launched July 12, 2014 from Silverstone, UK. In the 100 days since then, this balloon has covered 144168 kilometers and has crossed its launching longitude six times. Even if this balloon weren’t trapped at high latitudes (including coming within 9 km of the pole), this balloon has still travelled more than three times the equatorial circumference of the Earth.

The balloon was built by [Leo Bodnar] a.k.a. [M0XER] with a self-made plastic foil envelope. The solar-powered payload weighs only 11 grams. It’s an exceptional accomplishment and one that has smashed all the amateur high altitude balloon distance records we can find.

Ask Hackaday: Help NASA With Their High Altitude Problem

image of hackaday logo on box at high altitude

Unless you’ve been living under a high voltage transformer, you’ve probably heard that NASA has grounded the Space Shuttle fleet. This makes getting stuff to and from the International Space Station slightly more difficult. With the growing need to get small experiments back to the surface quickly and safely, NASA is researching an idea they call Small Payload Quick Return, or SPQR (pdf warning). Basically, they toss the experiment out of the window, use drag to slow it down, and then use a High Altitude High Opening (HAHO) self guiding parafoil to steer the thing down to a predefined location on the surface.

Now, what we’re interested in is the self guided parafoil part, as it takes place in known hacker territory – around 100,000 feet. This is the altitude where most high altitude balloon experiments take place. NASA is throwing a bunch of money and brainpower to research this part of the system, but they’re having problems. Lots of problems.

Stick around after the break and see if you can help, and maybe pick up some ideas on how to steer your next High Altitude Balloon project back to the launch pad.

Continue reading “Ask Hackaday: Help NASA With Their High Altitude Problem”

Ask Hackaday: Floating To Space

floating into space book cover

On a cool September morning just west of Sturbridge, Massachusetts, a group of MIT students launched a low-budget high altitude project that would go on to gain global attention. They revealed to the world that with a small weather balloon, a hacked camera, cheap GPS phone and a little luck, you could get pictures that rival those from the Space Shuttle. Their project set forth a torrent of hackers, students, kids and parents the world over trying to copy their success. Many succeeded. Others did not.

At 100,000 feet or about 20 miles up, it’s a brisk 60 degrees below zero. The atmosphere at this height is but a fraction of its density at sea level. Solar radiation rains down like a summer squall, and the view is just short of breathtaking. It seems so agonizingly close to space that you could just reach out and touch it. That one could almost float right on up into orbit.

Sound impossible? Think again. A little known volunteer based company operating out of California is trying to do just this.

Continue reading “Ask Hackaday: Floating To Space”

Hackaday Links: June 29, 2014

hackaday-links-chain

Ever see a really cool build on YouTube with no build details at all? Frustrating, right? That’s us with the NES Keytar covering the Game of Thrones theme. He’s using a Raspi with the sound chip in the NES to do live chiptunes. Freakin’ awesome. There’s also the ST:TNG theme as well.

A few years ago the folks at Oculus had an idea – because of cellphones, small, high resolution displays are really cheap, so why not make VR goggles? At Google IO this week someone figured out everyone already has a cellphone, so just wrap it in some cardboard and call it a set of VR goggles. You can get a kit here, but the only difficult to source components are the lenses.

What happens when you put liquid nitrogen under a vacuum? Well, it should evaporate more, get colder, and freeze. Then it breaks up into solid nitrogen snow. No idea what you would do with this, but there ‘ya go. Oh, [NC], we’re going to need a writeup of that LN2 generator.

About a month ago, the House4Hack hackerspace in South Africa told us of their plans to bring a glider down from 20km above the Earth. They finally launched it, The CAA only allowed them to glide back from 6km (20,000 feet), but even from there the foam glider hit 230kph (124 knots). That’s a little impressive for a foam FPV platform, and we’re betting something with a larger wingspan would probably break a spar or something. Shout out to HABEX.

All the electronic dice projects we’ve seen have one thing in common: they’re not cubes. Thus uberdice. It’s six nine-pixel displays on the faces of a cube, powered by a battery, and controlled by an accelerometer. Yes, it is by far the most complicated die ever made, but it does look cool.