Best of the Dinosaur Den 2014

If you haven’t been watching The Dinosaur Den, shame on you. This joint enterprise between [Fran Blanche] and our very own [Bil Herd] premiered in July and it is, simply put, the duck’s guts. In spite of being introduced to each other just a few months before the first episode, they banter like old friends. When they’re not riffing off each other, they’re giving a show and tell of all kinds of vintage technology. Most importantly, they’re always wearing really cool t-shirts.

Hot on the heels of their excellent holiday special comes this Best of the Dinosaur Den 2014 highlight reel. Some of our favorite bits are from said holiday special, because they spent the whole hour talking about their best-loved toys from holidays past, most of which started them on their paths to greatness. Come for the t-shirts, stay for the Zaxxon tabletop arcade and the toy that probably inspired LittleBits. Check out the best-of after the break, and then cook a Hot Pocket or something and watch them all. You’re pretty much guaranteed to learn something cool and/or useful.

Continue reading “Best of the Dinosaur Den 2014”

“Superfan” Gaming Peripheral Lets You Feel Your Speed

Virtual reality has come a long way but some senses are still neglected. Until Smell-O-Vision happens, the next step might be feeling the wind in your hair. Perhaps dad racing a sportbike or kids giggling on a rollercoaster. Not as hard to build as you might think, you probably have the parts already.

HAD - Superfan4Off-the-shelf devices serve up the seeing and hearing part of your imaginary environment, but they stop there. [Jared] wanted to take the immersion farther by being able to feel the speed, which meant building his own high power wind generator and tying it into the VR system. The failed crowdfunding effort of the “Petal” meant that something new would have to be constructed. Obviously, to move air without actually going on a rollercoaster requires a motor controller and some fans. Powerful fans.

A proponent of going big or going home, [Jared] picked up a pair of fans and modified them so heavily that they will launch themselves off of the table if not anchored down. Who overdrives fans so hard they need custom heatsinks for the motors? He does. He admits he went overboard and sensibly way overbudget for most people but he built it for himself and does not care.

Continue reading ““Superfan” Gaming Peripheral Lets You Feel Your Speed”

Global Space Balloon Challenge

Looking for a reason to put up a balloon and payload into near-space? Not that one’s necessary, but the Global Space Balloon Challenge has got a variety of good reasons for you to do so, in the form of prizes and swag from their sponsors. Go for highest altitude, best photograph, longest ground track, best on-board science payload, or a bunch more. Have a look through the gallery to check out last year’s winners, including teams that dropped a 3ft paper airplane or floated an R2D2 replica.

Basically all you need to do is register on their website and then go fly a high-altitude balloon between April 10th and 27th. Last year 60 teams took part, and this year they’ve already got 90 teams from 31 countries.

And if you’re just getting into the (hobby? sport?) of high-altitude ballooning, be sure to check out their tutorials and forum. Of course Hackaday has been covering folks’ near-space balloon efforts for a while now too, so you’ve got plenty of reading.

So what are you waiting for? Helium’s not getting any cheaper and spring is on its way. Start planning your balloon launch now.

Repairing and Reviewing a 1976 PONG Clone

Hackaday alum [Todd] has been searching for an old PONG clone for the last two years. This variant is called, “The Name of the Game”. [Todd] has fond memories of playing this game with his sister when they were young. Unfortunately, being the hacker that he is, [Todd] tore the game apart when he was just 14 to build his own Commodore 64 peripherals. He’s been wanting to make it up to his sister ever since, and he finally found a copy of this game to give to his sister last Christmas.

After opening up the box, [Todd] quickly noticed something strange with the power connector. It looked a bit charred and was wiggling inside of the enclosure. This is indicative of a bad solder joint. [Todd] decided he’d better open it up and have a look before applying power to the device.

It was a good thing he did, because the power connector was barely connected at all. A simple soldering job fixed the problem. While the case was still opened, [Todd] did some sleuthing and noticed that someone else had likely made repairs to several other solder joints. He also looked for any possible short circuits, but everything else looked fine. The system ended up working perfectly the first time it was started.

The end of the video shows that even after all this time, simple games like this can still capture our attention and be fun to play for hours at a time. [Todd] is working on part 2 of this series, where he’ll do a much more in-depth review of the system. You can watch part 1 below. Continue reading “Repairing and Reviewing a 1976 PONG Clone”

CES: Building Booths and Simulating Reality

My first day on the ground at CES started with a somewhat amusing wait at the Taxi Stand of the McCarran International Airport. Actually I’m getting ahead of myself… it started with a surprisingly efficient badge-pickup booth in the baggage claim of the airport. Wait in line for about three minutes, and show them the QR code emailed to you from online registration and you’re ready to move to the 1/4 mile-long, six-switchback deep line for cabs. Yeah, there’s a lot of people here for this conference.

It’s striking just how huge this thing is. Every hotel on the strip is crawling with badge-wearing CES attendees. Many of the conference halls in the hotels are filled with booths, meaning the thing is spread out over a huge geographic area. We bought three-day monorail passes and headed to the convention center to get started.

Building the Booths

[Sophi] knows [Ben Unsworth] who put his heart and soul into this year’s IEEE booth. His company, Globacore, builds booths for conferences and this one sounds like it was an exceptional amount of fun to work on. He was part of a tiny team that built a mind-controlled drag strip based on Emotive Insight brainwave measuring hardware shipped directly from the first factory production run. This ties in with the display screens above the track to form a leader board. We’ll have a keen eye out for hacks this week, but the story behind building these booths may be the best hack to be found.

Oculus

[Ben] told us hands-down the thing to see is the new Oculus hardware called Crescent Bay. He emphatically mentioned The Holodeck which is a comparison we don’t throw around lightly. Seems like a lot of people feel that way because the line to try it out is wicked long. We downloaded their app which allows you to schedule a demo but all appointments are already taken. Hopefully our Twitter plea will be seen by their crew.

In the meantime we tried out the Oculus Gear VR. It uses a Galaxy Note 4 as the screen along with lenses and a variety of motion tracking and user controls. The demo was a Zelda-like game where you view the scene from overhead. This used a handheld controller to command the in-game character with the headset’s motion tracking used to look around the playing area. It was a neat demo, I’m not quite sold on long gaming sessions with the hardware but maybe I just need to get used full-immersion first.

Window to another Dimension

DSC_0317

The midways close at six o’clock and we made our way to the Occipital booth just as they were winding done. I’ve been 3D scanned a few times before but those systems used turntables and depth cameras on motorized tracks to do the work. This uses a depth-camera add-on for an iPad which they call Structure Sensor.

It is striking how quickly the rig can capture a model. This high-speed performance is parlayed into other uses, like creating a virtual world inside the iPad which the user navigates by using the screen as if it were a magic window into another dimension. Their demo was something along the lines of the game Portal and has us thinking that the Wii U controller has the right idea for entertainment, but it needs the performance that Occipital offers. I liked this experience more than the Oculus demo because you are not shut off from the real world as you make your way through the virtual.

We shot some video of the hardware and plan to post more about it as soon as we get the time to edit the footage.

Find Us or Follow Us

josh-can-hardwareWe’re wearing our Hackaday shirts and that stopped [Josh] in his tracks. He’s here on business with his company Evermind, but like any good hacker he is carrying around one of his passion projects in his pocket. What he’s showing off are a couple of prototypes for a CANbus sniffer and interface device that he’s build.

We’ll be at CES all week. You can follow our progress through the following Twitter accounts: @Hackaday, @HackadayPrize, @Szczys, and @SophiKravitz. If you’re here in person you can Tweet us to find where we are. We’re also planning a 9am Thursday Breakfast meetup at SambaLatte in the Monte Carlo. We hope you’ll stop by and say hi. Don’t forget to bring your own hardware!

 

Trinket EDC Contest Winners

It’s time to announce the winners of the Trinket Everyday Carry Contest! We’ve had a great 5 weeks watching the projects come together. A team of Hackaday staffers spent their weekend watching videos and selecting their top entries based on the contest rules. We had a really hard time picking the top three – the competition was tight, and there were quite a few awesome projects.

Without further ado, here are the winners!

1337toolFirst Prize: 1337 3310 tool. [Mastro Gippo] really knocked this one out of the park. He built a swiss army knife of a tool out of the iconic Nokia 3310 candybar phone. 1337 3310 tool is a graphing voltage and current meter, an ohmmeter, a continuity tester that plays the original Nokia ringtone, and a gaming machine which can play Tetris.  [Mastro Gippo] is 99% there with TV-B-Gone functionality as well. Amazingly, [Mastro Gippo] kept the Nokia look and feel in his user interface. He spent quite a bit of time grabbing data and bitmaps from the 3310’s original ROM.  [Mastro Gippo] is getting a Rigol DS1054Z scope to help iron out the bugs in his future projects!

pavaproSecond Prize: Pavapro – portable AVR programmer. [Jaromir] built an incredible pocket-sized microcontroller programming tool. Pavapro can read and edit text files, handle serial I/O at 9600 baud, and burn AVR microcontrollers. If that’s not enough, it can actually assemble AVR binaries from source. That’s right, [Jaromir] managed to fit an entire assembler on the Pro Trinket’s ATmega328 processor. Pavapro’s 16 button keypad won’t allow for much in the way of touch typing, but it does get the job done with T9 style text entry. The device is also extensible, we’re hoping [Jaromir] adds a few other architectures! PIC and MSP430 modes would be awesome!  [Jaromir] will be receiving a Fluke 179 multimeter with a 6 piece industrial electronics tip kit! We’re sure he’ll put it to good use.

robohandThird Prize: Robotic 3rd Hand. Let’s face it. We can’t all be Tony Stark. But [Tim] gets us a little bit closer with his awesome wearable entry. Need a tool? Just press the button, and Robotic 3rd Hand will give you a … hand. [Tim’s] creation utilizes the Pro Trinket to drive a servo which moves an incredibly well designed and 3D printed mechanism that lifts a screwdriver off the wearer’s wrist and places it into their hand. [Tim] originally was going to go with Electromyography (EMG) sensors to drive the hand, however he switched to a simple button when they proved problematic. We absolutely think this was the right decision for the contest – it’s always better to have a simpler but working project rather than a complex yet unreliable one. That said, we’d love to see him circle back and give EMG another try! [Tim’s] next project will be soldered up with the help of a Hakko FX888D with a tip kit. If things get a bit wobbly, he can use his new Panavise 324 Electronic Work center to keep everything steady.

If you didn’t make the top three in this contest, don’t give up! We’re going to be having quite a few contests this year. The top 50 entrants will receive custom Hackaday EDC Contest T-shirts. Check out the full list of 50 on Hackday.io!

Genetic Algorithm Programmer Gets Functions

[Kory] has been writing genetic algorithms for a few months now. This in itself isn’t anything unique or exceptional, except for what he’s getting these genetic algorithms to do. [Kory] has been using genetic algorithms to write programs in Brainfuck. Yes, it’s a computer programming a computer. Be thankful Skynet is 18 years late.

When we first saw [Kory]’s work, he had programmed a computer to write and run its own programs in Brainfuck. Although the name of the language [Kory] chose could use some work, it’s actually the ideal language for computer-generated programs. With only eight commands, each consisting of a single character, it greatly reduces the overhead of what any genetic algorithm must produce and what a fitness function must evaluate.

There was one shortcoming to [Kory]’s initial efforts: functions. It’s relatively easy to get a program to say Hello World, but to do something complex, you’re going to need something like a macro or a function. Brainfuck, it its most simple form, doesn’t support functions. This throws a wrench in [Kory]’s plan to have his computer programming computer grow smarter and get over local minima in its genetic algorithms.

The solution to this problem was the creation of a new dialect of Brainfuck [Kory] calls BrainPlus. This takes the best parts of Extended Brainfuck and adds a command that basically serves as a break statement.

With this, [Kory]’s self programming computer can develop more complex programs. Already it has created a program to generate the first few numbers of the Fibonacci sequence. It only goes up to 233 because 255 is the maximum value for a byte, and the program itself took seven hours to generate. It does, however, work. Other programs generated with the new Brainplus functions include reciting 99 bottles on the wall and a program that multiples two values.

Even though [Kory]’s computer is spending a long time to generate these programs, given enough time, there’s really not much this program can’t do. Brainfuck, and [Kory]’s Brainplus, are Turing complete, so that given infinite memory and time it can compute anything. With the new addition of functions, it can compute anything faster.

All the code for [Kyle]’s GA is available on Github.