Machining Without Machines

It’s a luxury to be able to access a modern machine shop, complete with its array of lathes, mills, and presses. These tools are expensive though, and take up a lot of space, so if you want to be able to machine hard or thick metals without an incredible amount of overhead you’ll need a different solution. Luckily you can bypass the machines in some situations and use electricity to do the machining directly.

This project makes use of a process known as electrochemical machining and works on the principle that electricity passed through an electrolyte solution will erode the metal that it comes in contact with. With a well-designed setup, this can be used to precisely machine metal in various ways. For [bob]’s use this was pretty straightforward, since he needed to enlarge an existing hole in a piece of plate steel, so he forced electrolyte through this hole while applying around half an amp of current in order to make this precise “cut” in the metal, avoiding the use of an expensive drill press.

There are some downsides to the use of this process as [bob] notes in his build, namely that any piece of the working material that comes in contact with the electrolyte will be eroded to some extent. This can be mitigated with good design but can easily become impractical. It’s still a good way to avoid the expense of some expensive machining equipment, though, and similar processes can be used for other types of machine work as well.

Levitating Objects In Paramagnetic Liquids

Two weekends ago was the Bay Area Maker Faire, and lacking a venue to talk to people who actually make things, we had a meetup at a pub. This brought out a ton of interesting people, and tons of interesting demos of what these people were building. By either proclivity or necessity, most of these demos were very blinkey. The demo [Grant McGregor] from Monterey Community College brought was not blinkey, but it was exceptionally cool. He’s levitating objects in paramagnetic liquids with permanent magnets.

Levitating objects in a paramagnetic solution around a magnetic field has been an intense area of research for the Whitesides Research Group for a few years now, with papers that demonstrate methods of measuring the density of objects in a paramagnetic solution and fixing diamagnetic objects inside a magnetic field. [Grant] is replicating this research with things that can be brought to a bar in a small metal box – vials of manganese chlorate with bits of plastic and very strong neodymium magnets. The bits of plastic in these vials usually float or sink, depending on exactly what plastic they’re made of. When the paramagnetic solution is exposed to a magnetic field, the density of the solution changes, making the bits of plastic sink or float.

It’s a bizarre effect, but [Grant] mentioned a nurd rage video that shows the effect very clearly. [Grant]’s further experiments will be to replicate the Whitesides Research Group’s experiment to fix a diamagnetic object inside a magnetic field. As for any practical uses for this effect, you might be able to differentiate between different types of plastic (think 3D printing filament) with just a vial of solution and a strong magnet.

[Grant] was heading out of the pub right when I ran into him, but he did stick around long enough to run into the alley behind the pub and record an interview/demo. You can check that out below.

Continue reading “Levitating Objects In Paramagnetic Liquids”

Barcode Challenge – Part 2


Yesterday we issued a barcode challenge in honor of the Barcode’s birthday. Congratulations to [The Moogle] for winning this challenge. His submission offers a very detailed explanation of how he solved the puzzle using Photoshop, OpenOffice Calc, and some web resources. We’ve got a detailed writeup on it after the break.

Honorable mentions go to [nex] for putting up a Java solution and to [jwmaag] for showing a Python solution. Finally, kudos to all who used a CueCat in one way or another to decode the string. Just having one of those still around is pretty hack-it-y.

Because of the ubiquity of Barcode scanners and online image translation programs the challenge might have been a bit too easy. Do you think you’re up for a greater challenge? Download the new barcode and get to work. This one should be quite a bit harder to decipher. Once again, leave a comment that includes the message stored in the Barcode. Please remember, only entries that solve the puzzle and include a full description of the process will be considered. Good luck, and let the games begin.

Update: It only took [JP] 19 minutes to post a correct solution to the new Barcode.  Great work!

Continue reading “Barcode Challenge – Part 2”