Robot Sunflower Follows The Sun

Real flowers do it, and even the Beatles did it. [Robo Hub] now has a plastic sunflower that tracks the sun using, of course, an Arduino. It may not qualify as a real robot, but it does mimic a real sunflower. The electronics aren’t earth-shattering, of course. An Arduino, a light sensor, and a servo motor are all you really need. But we enjoyed the whimsy and the artistic sensibility. This would be a great school project, for example. Interesting enough to get kids interested but not so hard as to be undoable. You can see a video of the ersatz flower below.

There are actually a pair of light sensors, as you might expect. That way you can determine which sensor is getting the most light. Obviously, these can’t be on-off sensors. They are, in fact, light-dependent resistors, so you get a nice analog reading.

Of course, you might not need an Arduino for this. A 555 driving a servo and a handful of discrete components could measure a bridge with the photoresistors and get the same effect. On the other hand, a microcontroller these days is inexpensive and versatile, so why not?

Usually, people tracking the sun are trying to get more energy. That doesn’t have to be any more complicated, though.

Continue reading “Robot Sunflower Follows The Sun”

No-Laser CNC Engraver Is Something New Under The Sun

Hooking up a laser to a CNC gantry isn’t exactly an Earth-shattering innovation, but it does make for a useful tool. Even a cheap diode laser mounted to an old 3D printer can do engraving, marking, or even light-duty cutting. But what about a laser engraver without the laser? Can that be of any use?

Apparently, the answer is yes, if you can harness the power of the sun. That’s what [Lucas] did with his solar-tracking CNC engraver, the build of which is shown in the video below. The idea is pretty simple — mount a decent-sized magnifying lens where the laser optics would normally go on a laser engraver, and point the thing at the sun. But as usual, the devil is in the details. The sun has a nasty habit of moving across the sky during the day, or at least appearing to, so [Lucas] has to add a couple of extra degrees of freedom to a regular X-Y CNC rig to track the sun. His tracking sensor is simplicity itself — four CdS photocells arranged with a pair of perpendicular shades, and an Arduino to drive the gimbals in the correct direction to keep all four sensors equally illuminated. He had some initial problems getting the jerkiness out of the control loop, but the tracker eventually kept the whole thing pointing right at the Sun.

So how does it work? Not bad, actually — [Lucas] managed to burn some pretty detailed designs into a piece of wood using just the sun. He mentions adding a shutter to douse the cutting beam to allow raster patterns, but even better might be a servo-controlled iris diaphragm to modulate beam intensity and control for varying sun conditions. He might also check out this solar engraver we covered previously for some more ideas, too.

Continue reading “No-Laser CNC Engraver Is Something New Under The Sun”

A Simple Sun Tracker With Very Few Parts

There are a huge number of ways to track the sun if you have some reason to do so. You can use time-based algorithms, or feed in coordinates from the Internet, or you could do it with minimal parts and no electronic processing at all. The latter is how this project from [3D Printer Academy] works. 

One key thing about this project is that you shouldn’t be fooled by the solar panels. They’re not here to generate power for external use. Instead, they’re wired up in opposing polarities to a DC gear motor. The motor turns the panel assembly. As one panel is hit by the sun, it turns the assembly to bring the other panel into the sun as well simply by applying a DC voltage to the motor. The other panel is wired up the opposite way, so if it is in the sun, it brings the other panel into alignment as well.

This serves as a very simple planar solar tracker. If you want to track the sun with minimal parts, this is a very easy way to do it. You’ll just need to put whatever you want to actually aim at the sun on top of the assembly. if that happens to be a larger solar panel, it may be cumbersome and another more complex design may be more suitable.

It’s an ingenious and easy way of tracking the sun, even if it’s not immediately apparent how the device would be useful in its current form. If you’ve got an idea how you would use such a mechanism, let us know in the comments.

We’ve seen other solar tracker projects before, too. Video after the break.

Continue reading “A Simple Sun Tracker With Very Few Parts”

Self-Powered Sun Tracker Takes A Cue From NASA Solar Probe

Getting a solar array to track the sun has always been an interesting problem, and it has led to some complicated solutions. Controllers that use GPS and servos seem to be much in favor these days, but as this NASA-inspired sun tracker shows, the task needn’t be overly complex.

It’s pretty obvious from the video below that [NightHawkInLight]’s solar tracker is just a proof-of-concept for now, but it certainly shows promise. It’s based on NASA’s sun-skimming Parker Solar Probe, which uses sensors at the rear of the probe to maneuver the craft to keep sunlight from peeking around the sides of the shield. [NightHawkInLight]’s design simplifies that scheme even more, by using solar cells as the four sensors. The cells, mounted behind a solar shade, are directly connected to small gear motors that control azimuth and elevation. When a cell sees the sun, it powers the motor that moves the panel the right way to occlude the sun again, thereby cutting power to the motor.

[NightHawkInLight] mentions the obvious problem of what happens when the sun comes up and the array is pointing the complete opposite direction after the previous sunset, but we’re still not sure his solution – a larger array with tracking cells mounted further apart – will work. We’re also not sure how it will scale to larger arrays that need bigger motors to move. We’ve seen such arrays handled with more complicated trackers, of course, but we hope the simplicity of this design can be made practical for real-world use.

Continue reading “Self-Powered Sun Tracker Takes A Cue From NASA Solar Probe”