Linux Fu: Monitor Disks

If you want a quick view of a Linux system’s process load, you can use top or — slightly nicer — htop. But what if you want a quick snapshot of how the disk system is doing? There are a few tools you can use, some of which are not nearly as common as top.

First, iotop

Most similar to top is iotop. This program shows you the total and current disk read and write numbers for the file system and also shows you who is eating up the most disk I/O.  This screen looks busy:

Continue reading “Linux Fu: Monitor Disks”

Understand Linux Htop Visually

If you want to know exactly what’s going on in your Linux system, some of you might reach for top. For the connoisseur of system monitors, nothing less than htop will do. Not familiar with htop? [Umer Mansoor] did a beautiful job of explaining it graphically.

We’ve mentioned htop in a previous Linux Fu, but we’ve never gotten a chance to dig into it. And now, we don’t have to.  Like top, the htop program is still text-based, but it has a much nicer interface with colors, and easier way to send signals to processes, and support for tree displays. You can even use the mouse with it if you want to.

[Umer] did a lot of work to take screenshots of htop at work and annotate them. Sure, you could read the man page, but we think this is a lot better.

Of course, there are other improvements to top. Glances is pretty interesting, for example. For serious system administration help, you can try Webmin or Cockpit.

POV Tops Hobbyist Abilities

Sometimes a beautiful project is worth writing on that merit alone, but when it functions as designed,someone takes the time to create a thorough and beautiful landing page for their project, we get weak in the knees. We feel the need to grab the internet and point our finger for everyone to see. This is one of those projects that checks all our boxes. [Nathan Petersen] made a POV toy top called Razzler, jumping through every prototyping hoop along the way. The documentation he kept is what captured our hearts.

The project is a spinning top with an integrated persistence-of-vision (POV) display. That’s the line of LEDs that you see here. To sync up the patterns, the board includes an IMU, but detecting angular velocity with either gyroscope or accelerometer proved problematic. [Nathan’s] writeup of this is worth the read itself, but you’ll also enjoy the CNC workworking part of the project used to create the body of the spinning top.

This was [Nathan]’s first big solo project, and so many of the steps are explained by someone who just entered the deep-end very quickly. If you have experience, you may grin at the simplified reasonings, but for a novice, it makes for an approachable lesson. The way he selects hardware and firmware is pragmatic and perhaps even overkill, so you know he’s going into engineering. This overshot saved him when there were communication problems which needed a sacrifice of some processing power to run I2C on some GPIO.

We hope you enjoy reading about this combinations of POV, firmware (or is it?), and centrifugal force.

Air-Powered Top Only Possible On A 3D Printer

One of the major reasons anyone would turn to a 3D printer, even if they have access to a machine shop, is that there are some shapes that are not possible to make with conventional “subtractive manufacturing” techniques. There are a few more obvious reasons a lot of us use 3D printers over conventional machining such as size and cost, but there’s another major reason that 3D printers are becoming more and more ubiquitous. [Crumbnumber1] at Make Anything’s 3D Printing Channel shows us how powerful 3D printers are at iterative design with his air-powered tops. They incorporate fan blades that allow you to spin the top up to very high speeds by blowing air down onto it.

Iterative design is the ability to rapidly make prototypes that build and improve upon the previous prototype, until you’re left with something that does the job you need. Even with a machine shop at your disposal, it can be expensive to set up all of the tooling for a part, only to find out that the part needs a change and the tooling you have won’t work anymore. This is where 3D printers can step in. Besides all of their other advantages, they’re great for rapid prototyping. [Crumbnumber1] made a box full of tops and was able to test many different designs before settling on one that performed above and beyond everything that came before it.

The video below is definitely worth checking out. The design process is well documented and serves as a great model for anyone looking to up their rapid prototyping game.

Continue reading “Air-Powered Top Only Possible On A 3D Printer”