Adding USB-C (Kinda) To A PowerMac G4

For those who’ve never bitten the Apple, the PowerMac G4 was a blue-tinted desktop Macintosh offered from 1999 to 2004. At the time, the machines were plenty fast — being advertised as the first “personal supercomputer” when they hit the market. But Father Time is particularly harsh on silicon, so they’re properly archaic by modern standards.

As such, the rear panel of one of these machines is hardly where you’d expect to run into a functional USB-C port. But thanks to the efforts of [Dandu], old has officially met new. Critics will note that it’s not real USB-C, and instead uses USB 2.0 with the more modern connector. That’s true, but considering how many commercial devices we run into that are still using the same trick, we’ll give it a pass.

Continue reading “Adding USB-C (Kinda) To A PowerMac G4”

Ancient Pocket Computer Gets A USB-C Upgrade

Remember the ZEOS Pocket PC? Perhaps you knew it as the Tidalwave PS-1000. Either way, it was a small clamshell computing device that was first released all the way back in 1992, and perhaps most accurately known as a DOS-based palmtop. Over at [Robert’s Retro] on YouTube, one of these fine devices was put through a repair and a modern upgrade program.

[Robert] educates us on the basics of the machine as he sets about the routine repairs so familiar to anyone in the retrocomputing scene. The first order of business is to clean up the damage to the battery compartment, which had suffered corrosion from leaking AA batteries. We get a solid look inside, and a walk-through on how to modify the device to run off USB-C power. It’s as simple as wiring up a small power module PCB and integrating that into the case, but it’s a neat mod done well—and it makes toying with the device much easier in 2025.

[Robert] has a cause he’s pursuing, though, when it comes to these old palmtops. He’s trying to identify the name of the oddball connectors these things used for the parallel and serial interfaces, and ideally, a source for the same. If you’ve got a tip on that, drop it in the comments.

Funnily enough, these things were cloned like crazy back in the day, so you might even find one under another name in your retro travels. They might be old, but somehow, it’s impossible for a piece of tech to feel old when you’re hooking it up with a USB-C port. We’ve featured [Robert’s] work before, too!

Continue reading “Ancient Pocket Computer Gets A USB-C Upgrade”

No Frills PCB Brings USB-C Power To The Breadboard

At this point, many of us have gone all-in on USB-C. It’s gotten to the point that when you occasionally run across a gadget that doesn’t support being powered USB-C, the whole experience seems somewhat ridiculous. If 90% of your devices using the same power supply, that last 10% starts feeling very antiquated.

So why should your breadboard be any different? [Axiometa] has recently unveiled a simple PCB that will plug into a standard solderless breadboard to provide 3.3 and 5 VDC when connected to a USB-C power supply. The device is going to start a crowdfunding campaign soon if you want to buy a completed one — but with the design files and Bill of Materials already up on GitHub, nothing stops you from spinning up your own version today.

Continue reading “No Frills PCB Brings USB-C Power To The Breadboard”

A Modern Battery For A Classic Laptop

Aside from their ability to operate fairly well in extreme temperatures, lead-acid batteries don’t have many benefits compared to more modern battery technology. They’re heavy, not particularly energy dense, have limited charge cycles, and often can’t be fully discharged without damage or greatly increased wear. With that in mind, one can imagine that a laptop that uses a battery like this would be not only extremely old but also limited by this technology. Of course, in the modern day we can do a lot to bring these retro machines up to modern standards like adding in some lithium batteries to this HP laptop.

Simply swapping the batteries in this computer won’t get the job done though, as lead-acid and lithium batteries need different circuitry in order to be safe while also getting the maximum amount of energy out. [CYUL] is using a cheap UPS module from AliExpress which comes with two 18650 cells to perform this conversion, although with a high likelihood of counterfeiting in this market, the 18650s were swapped out with two that were known to be from Samsung. The USB module also needs to be modified a bit to change the voltage output to match the needs of the HP-110Plus, and of course a modernized rebuild like this wouldn’t be complete without a USB-C port to function as the new power jack.

[CYUL] notes at the end of the build log that even without every hardware upgrade made to this computer (and ignoring its limited usefulness in the modern world) it has a limited shelf life as the BIOS won’t work past 2035. Hopefully with computers like this we’ll start seeing some firmware modifications as well that’ll let them work indefinitely into the future. For modern computers we’ll hope to avoid the similar 2038 problem by switching everything over to 64 bit systems and making other software updates as well.

An animated GIF of Engineer Bo's Precision Bluetooth Scroll Wheel wirelessly, and effortlessly scrolling down the Hack A Day blog with a single finger

Doomscroll Precisely, And Wirelessly

Around here, we love it when someone identifies a need and creates their own solution. In this case, [Engineer Bo] was tired of endless and imprecise scrolling with a mouse wheel. No off-the-shelf solutions were found, and other DIY projects either just used hacked mice scroll wheels, customer electronics with low-res hardware encoders, or featured high-res encoders that were down-sampled to low-resolution. A custom build was clearly required.

A photo of a 3D printed yellow plastic form with red marker drawn on the top of the support material and used in Engineer Bo's Precision Bluetooth Scroll Wheel

We loved seeing hacks along the whole process by [Engineer Bo], working with components on hand, pairing sensors to microcontrollers to HID settings, 3D printing forms to test ergonomics, and finishing the prototype device. When 3D printing, [Engineer Bo] inserted a pause after support material to allow drawing a layer of permanent marker ink that acts as a release agent that can later be cleaned with rubbing alcohol. 

We also liked the detail of a single hole inside used to install each of the three screws that secure the knob to the base. While a chisel and UV-curing resin cleaned up some larger issues with the print, more finishing was required. For a project within a project, [Engineer Bo] then threw together a mini lathe with 3D printed and RC parts to make sanding easy.

Scroll down with your clunky device to see the video that illustrates the precision with a graphic of a 0.09° rotation and is filled with hacky nuggets. See how the electronics were selected and the circuit designed and programmed, the use of PCBWay’s CNC machining in addition to board assembly services, and how to deal with bearings that spin too freely. [Engineer Bo] teases that a future version might use a larger bearing for less wobble and an anti-slip coating on the base. Will the board files and 3D models be released, too? Will these be sold as finished products or kits? Will those unused LED drivers be utilized in an upcoming version? We can’t wait to see what’s next for this project.

Continue reading “Doomscroll Precisely, And Wirelessly”

When The EU Speaks, Everyone Charges The Same Way

The moment everyone has been talking about for years has finally arrived, the European Union’s mandating of USB charging on all portable electronic devices is now in force. While it does not extend beyond Europe, it means that there is a de facto abandonment of proprietary chargers in other territories too. It applies to all mobile phones, tablets, digital cameras, headphones, headsets, game consoles, portable speakers, e-readers, keyboards, mice, portable navigation systems and earbuds, and from early 2026 it will be extended to laptops.

Hackaday readers will probably not need persuading as to the benefits of a unified charger, and truth be told, there will be very few devices that haven’t made the change already. But perhaps there’s something more interesting at work here, for this moment seals the place of USB-C as a DC power connector rather than as a data connector that can also deliver power.

Back in 2016 we lamented the parlous state of low voltage DC power standards, and in the time since then we’ve arrived at a standard involving ubiquitous and commoditised power supplies, cables, and modules which we can use for almost any reasonable power requirement. You can thank the EU for that mobile phone now having the same socket as its competitor, but you can thank the USB Implementers Forum for making DC power much simpler.

An LCD, Touch Sensor, USB-C, And A Microcontroller For A Buck

[CNLohr] has been tinkering with some fun parts of late. He’d found out that ordinary LCD screens could be used as simple touch sensors, and he had to try it for himself. He ended up building a little doohickey that combined USB C, an LCD display, and a touch interface, all for under a buck. You can check out the video below.

The key to this build was the CH32V003 CPU. It’s a RISC-V microcontroller that runs at a healthy 48 MHz, and it costs just 10 cents in reasonable quantities. A PCB etched to mate with a USB C cable eliminates the need for a connector.

[CNLohr] then gave the board a three-digit 7-segment LCD display from Aliexpress, which can be had for around 21 cents if you buy 100 or more. He then figured out how to drive the LCDs with a nifty trick that let the microcontroller use the display as a crude touch sensor. All in all, the total bill of materials for one of these things comes out somewhere under a dollar in quantity.

It’s mostly a random assemblage of tech glued together for a demo, but it’s a fun project. It’s worth checking out even if it’s just to learn how to create an integral USB C port on your own PCBs. The way it’s achieved with the etched contacts and milled-out tabs is pure elegance. Files are on Github for the curious.

We’ve featured a ton of [CNLohr’s] work over the years; the clear keytar was a glowing highlight, as were his early discoveries in the depths of the ESP8266.

Continue reading “An LCD, Touch Sensor, USB-C, And A Microcontroller For A Buck”