A Hydra Of A 3D Printer

3D printers are great for producing one thing, but if you need multiple copies, the workflow quickly starts to go downhill. The solution? Build a 3D printer with multiple print heads, capable of printing four objects in the same amount of time it takes to print one.

This build is an experiment for [allted]’ Mostly Printed CNC / MultiTool. It’s a CNC machine that uses printed parts and 3/4″ electrical conduit for the frame and rails.  That last bit is the interesting part: electrical conduit is cheap, easy to acquire, available everywhere, and can be cut with a hacksaw. As far as desktop CNC machines go, it doesn’t get simpler or cheaper than this, and a few of these builds are milling wood with the same quality of a machine based on linear rails. It won the grand prize in the recent Boca Bearings contest, and is a great basis for a cheap and serviceable 2.5 or 3D CNC.

[allted] already has this cheap CNC mill cutting aluminum and engraving wood with a laser, showing off the capabilities of a remarkably cheap but highly expandable CNC machine. It’s a fantastic build, and we can’t wait to see more of these machines pop up in garages and workspaces.

Continue reading “A Hydra Of A 3D Printer”

Automating A Microscope For CNC Micrographs

[Maurice] is a photographer specializing in micrographs. These very large images of very small things are beautiful, but late last year he’s been limited by his equipment. He needed a new microscope, one designed for photography, that had a scanning stage, and ideally one that was cheap. He ended up choosing a microscope from the 80s. Did it meet all his qualifications? No, but it was good enough, and like all good tools, capable of being modified to make a better tool.

This was a Nikon microscope, and [Maurice] shoots a Canon. This, of course, meant the camera mount was incompatible with a Canon 5D MK III, but with a little bit of milling and drilling, this problem could be overcome.

That left [Maurice] with a rather large project on his hands. He had a microscope that met all his qualifications save for one: he wanted a scanning stage, or a bunch of motors and a camera controller that could scan over a specimen and shoot gigapixel images. This was easily accomplished with a few 3D printed parts, stepper motors, and a Makeblock Orion, an Arduino-based board designed for robotics that also has two stepper motor drivers.

With a microscope that could automatically scan over a specimen and snap a picture, the only thing left to build was a piece of software that automated the entire process. This software was built with Processing. While this sketch is very minimal, it does allow [Maurice] to set the step size and how many pictures to take in the X and Y axis. The result is easy automated micrographs. You can see a video of the process below.

Continue reading “Automating A Microscope For CNC Micrographs”

Hackaday Prize Entry: A Universal Glucose Meter

If you need an example of Gillette’s razor blade business plan, don’t look at razors; a five pack of the latest multi-blade, aloe-coated wonder shaver is still only about $20. Look a glucose meters. Glucose meters all do the same thing – test blood glucose levels – but are imminently proprietary, FDA regulated, and subsidized by health insurance. It’s a perfect storm of vendor lock-in that would make King Gillette blush.

For his Hackaday Prize entry, [Tom] is building what was, until now, only a dream. It’s a universal glucometer that uses any test strip. The idea, of course, is to buy the cheapest test strip while giving the one-fingered salute to the companies who release more models of glucometers in a year than Apple does phones.

As with any piece of consumer electronics, there are plenty of application guides published by the biggest semiconductor companies explaining to engineers how to use their part to build a device. After reviewing the literature from TI, Maxim, Freescale, and Microchip, and a few research articles on the same subject, [Tom] has a pretty good idea how to build a glucometer.

The trick now is figuring out how to build an adapter for every make and model of test strip. This is more difficult than it sounds, because some test strips have two contacts, some have three, some have five, and all of them are proprietary. Calibration will be an issue, but if you’re building a glucometer from scratch, that’s not a very big problem.

This is one of the most impressive projects we’ve seen in this year’s Hackaday Prize. No, it shouldn’t be the only way a diabetic tracks their sugar levels, but diabetics shouldn’t rely only on test strips anyway. If you’re looking for a Hackaday Prize project that has the potential to upend an industry, this is the one.

The HackadayPrize2016 is Sponsored by:

Reverse Engineering Quadcopter Protocols

Necessity is the mother of invention, but cheap crap from China is the mother of reverse engineering. [Michael] found a very, very cheap toy quadcopter in his local shop, and issued a challenge to himself. He would reverse engineer this quadcopter’s radio protocol. His four-post series of exploits covers finding the right frequency for the radio, figuring out the protocol, and building his own remote for this cheap toy.

[Michael] was already familiar with the capabilities of these cheap toys after reading a Hackaday post, and the 75-page, four language manual cleared a few things up for him. The ‘Quadro-Copter’ operated on 2.4GHz, but did not give any further information. [Michael] didn’t know what channel the toy was receiving on, what data rate, or what the header for the transmission was. SDR would be a good tool for figuring this out, but thanks to Travis Goodspeed, there’s a really neat trick that will put a 2.4GHz nRF24L01+ radio into promiscuous mode, allowing [Michael] to read the transmissions between the transmitter and quadcopter. This code is available on [Michael]’s github.

A needle in an electromagnetic haystack was found and [Michael] could listen in on the quadcopter commands. The next step was interpreting the ones and zeros, and with the help of a small breakout board and soldering directly to the SPI bus on the transmitter, [Michael] was able to do just that. By going through the nRF24 documentation, he was able to suss out the pairing protocol and read the stream of bytes that commanded the quadcopter.

What [Michael] was left with is a series of eight bytes sent in a continuous stream from the transmitter to the toy. These bytes contained the throttle, yaw, pitch, roll, and a ‘flip’ settings, along with three bytes of ‘counters’ that didn’t seem to do anything.  With that info in hand, [Michael] took an Arduino Nano, an nRF04L01+ transceiver, and a Wii nunchuck to build his own transmitter. If you’re looking for a ‘how to reverse engineer’ guide, it generally doesn’t get better than this.

You can check out a video of [Michael] flying his Wiimoted quadcopter below.

Continue reading “Reverse Engineering Quadcopter Protocols”

Automating 3D Printers With Robots

3D printers were never meant to be used for production. They’re not manufacturing machines, they’re prototyping machines. That doesn’t mean 3D printers can’t be used in a manufacturing context, it’s just very hard – you’d need someone manning a fleet of machines, or some sort of ‘automated build platform’ that won’t be invented for exactly fourteen years.

In the absence of someone paid to watch printers print, [Mark], [Robert], and [James] at tend.ai have created a way to manage a fleet of printers with a robot arm. It’s a robotic arm that automatically monitors the LCD on a rack full of 3D printers, plucks the finished prints off the bed, drops the parts in a box, and starts another print.

Tend.ai is in the business of cloud robotics, and have designed a system that takes any robotic arm, any webcam, and provides the backend for this robotic arm to – wait for it – tend to other machines. As a demo, it works well. Parts are picked up off of the machines, dropped into boxes, and another print run started.

As a tech demo for a cloud robotics platform, you can’t do much better than this. As a way to automate a fleet of 3D printers, I can only wonder how this robot arm system would work with large, flat printed parts. A robotic gripper could always be replaced with a spatula, I guess.

You can check out the demo and the ‘how they did it’ video below.

Continue reading “Automating 3D Printers With Robots”

Removing DRM From Aaron Swartz’s eBook

After his death, Aaron Swartz became one of the Internet’s most famous defenders of the free exchange of information, one of the most polarizing figures on the topic of intellectual property, and the most famous person that still held on to the ideals the Internet was founded on. Aaron was against DRM, fought for the users, and encouraged open access to information.

Early this year, Verso Books published the collected writings of Aaron Swartz. This eBook, according to Verso, contains ‘social DRM’, a watermarking technology that Verso estimates will, “contribute £200,000 to the publisher’s revenue in its first year.” This watermarking technology embeds uniquely identifiable personal information into individual copies of eBooks.

With a heavy sigh, you realize you do not live in the best of all possible worlds.

The Institute for Biblio-Immunology had a similar reaction to Verso Books’ watermarking technology applied to the collected writings of Aaron Swartz. In a communique released late last weekend, they cracked this watermarking scheme and released the code to remove this ‘social DRM’ from ePub files.

The watermarking technology in Aaron Swartz’s eBook comes courtesy of BooXtream, a security solution where every eBook sold is unique using advanced watermarking and personalization features. “A publication that has been BooXtreamed can be traced back to the shop and even the individual customer,” the BooXtream website claims, and stands in complete opposition to all of Aaron Swartz’s beliefs.

After analyzing several digital copies of Aaron Swartz’s eBook, the Institute for Biblio-Immunology is confident they have a tool that removes BooXtrem’s watermarks in EPUB eBooks. Several watermarks were found, including the very visible – Ex Libris images, disclaimer page watermarks, and footer watermarks – and the very hidden, including image metadata, filename watermarks, and timestamp fingerprints.

While the Institute believes this tool can be used to de-BooXtream all currently available ‘social DRM’ed’ eBooks, they do expect the watermarking techniques will be quickly modified. This communique from the Institute of Biblio-Immunology merely provides the background of what BooXtream does, not the prescription for the disease of ‘social DRM’. These techniques can be applied to further social DRM’ed eBooks, which, we think, is what Aaron would have done.

Hackaday Prize Entry: A Local Positioning System

Use of the global positioning system is all around us. From the satnav in your car to quadcopters hovering above a point, there are hundreds of ways we use the Global Positioning System every day. There are a few drawbacks to GPS: it takes a while to acquire a signal, GPS doesn’t work well indoors, and because nodes on the Internet of Things will be cheap, they probably won’t have a GPS receiver.

These facts open up the door for a new kind of positioning system. A local positioning system that uses hardware devices already have, but is still able to determine a location within a few feet. For his Hackaday Prize entry, [Blecky] is building the SubPos Ranger, a local positioning system based on 802.15.4 radios that still allows a device to determine its own location.

The SubPos Ranger is based on [Blecky]’s entry for the 2015 Hackaday Prize, SubPos that used WiFi, RSSI, and trilateration to determine a receiver’s position in reference to three or more base stations. It works remarkably well, even in places where GPS doesn’t, like parking garages and basements.

The SubPos Ranger is an extension of the WiFi-only SubPos, based on 802.15.4, and offers longer range and lower power than the WiFi-only SubPos system. It’s still capable of determining where a receiver is to within a few feet, making this the ideal solution for devices that need to know where are without relying on GPS.

The HackadayPrize2016 is Sponsored by: