Hackaday Prize Entry: Controlling Relays Over WiFi

It’s been less than a year since the ESP8266 WiFi Module was released. This is a chip whose original data sheets were only available in Chinese, could only be controlled through AT commands, and was (originally) only sold through Seeed Studio and other various Chinese retailers. It had one thing going for it: it was five dollars. For the price of a crappy sub, you can blink an LED from the Internet. Needless to say, the ESP8266 is now very popular.

There are a lot of ESP8266 projects in The Hackaday Prize this year, and [David]’s project is making great use of the relatively meager pinout of this module. He’s built an 8-channel relay controller with a WiFi interface to control industrial equipment. It’s a great project, but just of many ESP projects in the prize this year.

The ESP doesn’t have a huge number of pins, but there are enough for some serious work with the right hardware. He’s using the ESP-12 module to get the most pins, and using an SPI port expander to drive an octet of relays. It’s a simple board, but everything you need to control a bunch of relays over WiFi is right there: LEDs, reset buttons, and RS232 level conversion.

You can check out a pair of very satisfying videos of relays clicking below.

 

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: Controlling Relays Over WiFi”

Exploding Multimeter Battle Royale

If you check out eBay, Amazon, or the other kinda-shady online retailers out there, you’ll quickly find you can buy a CAT III (600V) rated multimeter for under $50. If you think about it, this is incredible. There’s a lot of engineering that needs to go into a meter that is able to measure junction boxes, and factories in China are pushing these things out for an amazing price.

Over on the EEVBlog, these meters are being pushed to the limits. Last month, [joeqsmith] started a thread testing the theory that these cheap meters can handle extremely high voltages. A proper CAT III test requires a surge of electrons with a 6kV peak and a 2 ohm source. With a bunch of caps, bailing wire, JB Weld and zip ties, anyone can test if these meters are rated at what they say they are. Get a few people on the EEVBlog sending [joeqsmith] some cheapo meters, and you can have some real fun figuring out how these meters stack up.

The real experiments began with [joe smith]’s low energy surge generator, a beast of a machine that can be measured with an even beastlier high voltage scope probe. This is a machine that will send a voltage spike through anything to short out traces on poorly designed multimeters.

How did the cheapo meters fare? Not well, for the most part. There was, however, one exception: the Fluke 101. This is Fluke’s My First Multimeter, stuffed into a pocketable package. This meter is able to survive 12kV pulses when all but two of the other brands of meters would fail at 3kV.

What’s the secret to Fluke’s success? You only need to look at what the Fluke 101 can’t do. Fluke’s budget meter doesn’t measure current. If you ever look inside a meter, you’ll usually find two fuses, one for measuring Amps and the other for all the other functions on the scope. There’s quite a bit of engineering that goes into the current measurement of a meter, and when it goes wrong you have a bomb on your hands. Fluke engineers rather intelligently dropped current measurement from this budget meter, allowing them to save that much on their BOM.

There’s an impressive amount of data collected by [joeqsmith] and the other contributors in this thread, but don’t use this to decide on your next budget meter; This is more of an interesting discovery of how to make a product that meets specs: just cut out what can’t be done with the given budget.

Hackaday Prize Entry: They Make FPGAs That Small?

There are a few development boards entered in this year’s Hackaday Prize, and most of them cover well-tread ground with their own unique spin. There are not many FPGA dev boards entered. Whether this is because programmable logic is somehow still a dark art for solder jockeys or because the commercial offerings are ‘good enough’ is a matter of contention. [antti lukats] is doing something that no FPGA manufacturer would do, and he’s very good at it. Meet DIPSY, the FPGA that fits in the same space as an 8-pin DIP.

FPGAs are usually stuffed into huge packages – an FPGA with 100 or more pins is very common. [antti] found the world’s smallest FPGA. It’s just 1.4 x 1.4mm on a wafer-scale 16-pin BGA package. The biggest problem [antti] is going to have with this project is finding a board and assembly house that will be able to help him.

The iCE40 UltraLite isn’t a complex FPGA; there are just 1280 logic cells and 7kByte of RAM in this tiny square of programmable logic. That’s still enough for a lot of interesting stuff, and putting this into a convenient package is very interesting. The BOM for this project comes out under $5, making it ideal for experiments in programmable logic and education.

A $5 FPGA is great news, and this board might even work with the recent open source toolchain for iCE40 FPGAs. That would be amazing for anyone wanting to dip their toes into the world of programmable logic.

The 2015 Hackaday Prize is sponsored by:

Astronaut Or Astronot: Win $1000 For Clicking A Button

Over the last few weeks, we’ve had a lot of fun running the Community Voting for The Hackaday Prize. We’ve been offering up a $1000 gift card for The Hackaday Store to a random person on Hackaday.io if they have voted in the latest round of community voting. Unfortunately all of our weekly random drawings for someone on Hackaday.io has come up empty-handed.

Now we’re changing it. Due to popular demand, someone who has voted in the latest round of Community Voting will win a $1000 gift card. We will draw a winner this week! We’re giving away a thousand dollar gift card to a random person who has voted in the latest round of community. It’s the change you’ve asked for.

Next Wednesday, July 8th at around 22:00 UTC, I’m going to find a random person on Hackaday.io. If that person has voted, they get $1000. If not, I’m going to choose someone who has voted and give them a $1000 gift card. It’s really that simple. If you vote in the current round of Community Voting, you have a good chance at winning a thousand dollar gift card for the Hackaday Store.

What do you need to do to get in on the action? Go here and choose the most Amazingly Engineered project. You will be presented with two projects. Pick the project that is the more ‘amazingly engineered’ project. That’s it. That’s all you have to do. Show up and vote!

Tiny x86 Systems With Graphics Cards

The Intel Edison is out, and that means there’s someone out there trying to get a postage-stamp sized x86 machine running all those classic mid-90s games that just won’t work with modern hardware. The Edison isn’t the only tiny single board computer with an x86 processor out there; the legends told of another, and you can connect a graphics card to this one.

This build uses the 86Duino Zero, a single board computer stuffed into an Arduino form factor with a CPU that’s just about as capable as a Pentium II or III, loaded up with 128 MB of RAM, a PCI-e bus, and USB. It’s been a while since we’ve seen the 86Duino. We first saw it way back at the beginning of 2013, and since then, barring this build, nothing else has come up.

The 86Duino Zero only has a PCI-e x1 connector, but with an x16 adapter, this tiny board can drive an old nVidia GT230. A patch to the Coreboot image and a resistor for the Reset signal to the VGA was required, but other than that, it’s not terribly difficult to run old games on something the size of an Arduino and a significantly larger graphics card.

Thanks [Rasz] for sending this one in.

Continue reading “Tiny x86 Systems With Graphics Cards”

Hackaday Prize Entry: What To Do With A Bunch Of Old Computer Adapters

Back in the old days of 2014 when Radio Shack still existed, you could drive up to any strip mall in America and buy D-sub connectors that were made all the way back in 1972. Yes, connectors for all those SCSI, serial, parallel, and other weird ports you’d find on old computers could be bought for less than five dollars. For some reason or another, [yesnoio] has a ton of these connectors. Not just the connectors, but also those little plastic shells that clip onto the connectors. What to do with them? Retro Modules! It’s basically LittleBits if LittleBits were invented in 1987.

The goal of Retro Modules is to be able to put prototypes into your backpack without tearing a wire or two out of a breadboard. The basic foundation is to have a specification that outlines the pinout of DB-25 and DE-9 connectors, using these signals for power, an I²C bus,. analog lines, and SPI lines. Put a microcontroller in one of these plastic shells, a sensor in another, and a display in a third; you have an electronics prototyping platform that was designed in the backroom of a Radio Shack.

[yesnoio] has a Getting Started guide that takes you through the creation of the first three Retro Modules. The first is an Arduino nano or micro stuffed into a plastic shell with one female DA-15 connector. The second module is just a LED and resistor, and the third is just a servo. These can be connected together, and controlled because of the specification lined out. It’s brilliant, a little bit crazy, and something that has the potential to be much, much cooler than any electronics prototyping platform you’ll find at Maker Faire.

The 2015 Hackaday Prize is sponsored by:

New Part Day: Memristors

For the last few years, the people in the know have been wondering about the memristor. The simplest explanation of what a memristor is comes from the name itself – it’s a memory resistor. In practice it’s a little more complex, but this basic understanding is enough to convey the fact that it’s a resistor that changes its resistance based on how much current has gone through it. The memristor was first described in the 70s by [Leon Chua], the idea sat in journals for nearly forty years, and in 2008 a working memristor was created by HP Labs.

Now you can buy one. Actually, you can buy eight in a 16-pin DIP package. It will, reportedly, cost $240 for the 16-pin DIP. That’s only $30 per memristor, and it’s the first time you can buy them.

These memristors are based on a silver chalcogenide (Ge2Se3). When a circuit ‘writes’ to this memristor and applies a positive voltage, silver ion migrate to the chalcogenide, forming what the datasheet (PDF) calls dendrites. This lowers the resistance of the memristor. When a negative voltage is applied to the device, these dendrites are removed, the memristor is ‘erased’, and the memristor returns to a high-resistance state.

This silver chalcogenide memristor is different from the titanium oxide memristors developed by HP Labs that is most frequently cited when it comes to this forgotten circuit element. This work is from [Kristy Campbell] of Boise State University. She’s been working on it for more than a decade now, with IEEE publications, conference proceedings (that one’s full text), and dozens of patents.

As far as applications for memristors go, there are generally two schools of thought on that. The most interesting, in terms of current computer technology, is storage. Memristors can hold either a binary 0 or a 1 in a fraction of the space NAND Flash or old-fashioned magnetic hard drives ever will. That means greater storage density, and bigger capacity hard drives with lower power requirements. These memristors have a limit of how many times they can be cycled – ‘greater than 2000 times’ according to the datasheet. That’s nearly an order of magnitude less than MLC Flash, and something wear leveling can’t reasonably compensate for. This is a new technology, though, so that could change.

The second major expected use for memristors is neural nets. Neural nets are just a series of inputs, a few neurons, outputs, and connections between all three. These connections are weighted, and the variable resistance of memristors puts them in a unique position to emulate in hardware at the most basic level what was once done with software and custom ASICs. The trade name for these memristors – Neuro-Bit – and the company name – Bio Inspired Technologies – give you a clue at what the intended use is.

As with all new technologies, there’s always something that is inevitably created that was never imagined by the original designers. What these new applications are is at this point just speculation. Now that anyone can buy one of these neat new chips, it’s going to be interesting to see what can be made with these parts.