Hackaday Prize Entry: A Printer For Alternative Photography

Film photography began with a mercury-silver amalgam, and ended with strips of nitrocellulose, silver iodide, and dyes. Along the way, there were some very odd chemistries going on in the world of photography, from ferric and silver salts to the prussian blue found in Cyanotypes and blueprints.

Metal salts are fun, and for his Hackaday Prize entry, [David Brown] is building a printer for these alternative photographic processes. It’s not a dark room — it’s a laser printer designed to reproduce images with weird, strange chemistries.

Cyanotypes are made by applying potassium ferricyanide and ferric ammonium citrate to some sort of medium, usually paper or cloth. This is then exposed via UV light (i.e. the sun), and whatever isn’t exposed is washed off. Instead of the sun, [David] is using a common UV laser diode to expose his photographs. he already has the mechanics of this printer designed, and he should be able to reach his goal of 750 dpi resolution and 8-bit monochrome.

Digital photography will never go away, but there will always be a few people experimenting with light sensitive chemicals. We haven’t seen many people experiment with these strange alternative photographic processes, and anything that gets these really cool prints out into the world is great news for us.

Hackaday Prize Entry: A CPU For Balloons

Launching a high altitude balloon requires a wide breadth of knowledge. To do it right, you obviously need to know electronics and programming to get temperature, pressure, and GPS data. You’ll have to research which cameras will take good pictures and are easily programmable. It’s cold up there, and that means you need some insulation to keep the batteries warm. If you ever want to find your payload, you’ll also need an amateur radio license.

There’s a lot of work that goes into launching high altitude balloons, and for his Hackaday Prize entry, [Jeremy] designed a simple embedded data recorder capable of flying over 100,000 feet.

This flight data recorder for balloons is based on the ever popular ATMega328, and includes humidity, temperature, pressure, accelerometer, gyroscope, and magnetometer sensors. All of this data is recorded to an SD card. The Real Engineers™ who are wont to criticize design decisions they disagree with might laugh at the use of a 7805 voltage regulator, but in this case it makes a lot of sense. The power wasted by a linear regulator isn’t. It’s turned into heat which keeps the batteries alive a little bit longer.

This balloon data recorder has already flown, and [Jeremy] got some great pictures out of it. It’s a great piece of the puzzle for an exceptionally multidisciplinary project, and a great entry for the Hackaday Prize.

Ask Hackaday: Calling All 68k Experts

This is a tale of old CPUs, intensive SMD rework, and things that should work but don’t.

Released in 1994, Apple’s Powerbook 500 series of laptop computers were the top of the line. They had built-in Ethernet, a trackpad instead of a trackball, stereo sound, and a full-size keyboard. This was one of the first laptops that looked like a modern laptop.

The CPU inside these laptops — save for the high-end Japan-only Powerbook 550c — was the 68LC040. The ‘LC‘ designation inside the part name says this CPU doesn’t have a floating point unit. A few months ago, [quarterturn] was looking for a project and decided replacing the CPU would be a valuable learning experience. He pulled the CPU card from the laptop, got out some ChipQuick, and reworked a 180-pin QFP package. This did not go well. The replacement CPU was sourced from China, and even though the number lasered onto the new CPU read 68040 and not 68LC040, this laptop was still without a floating point unit. Still, it’s an impressive display of rework ability, and generated a factlet for the marginalia of the history of consumer electronics.

Faced with a laptop that was effectively unchanged after an immense amount of very, very fine soldering, [quarterturn] had two choices. He could put the Powerbook back in the parts bin, or he could source a 68040 CPU with an FPU. He chose the latter. The new chip is a Freescale MC68040FE33A. Assured by an NXP support rep this CPU did in fact have a floating point unit, [quarterturn] checked the Mac’s System Information. No FPU was listed. He installed NetBSD. There was no FPU installed. This is weird, shouldn’t happen, and now [quarterturn] is at the limits of knowledge concerning the Powerbook 500 architecture. Thus, Ask Hackaday: why doesn’t this FPU work?

Continue reading “Ask Hackaday: Calling All 68k Experts”

Hackaday Prize Entry: A Charlieplexed Wristwatch

If there’s one thing we like, it’s blinky stuff, and you’re not going to get anything cooler than a display made of tiny SMD LEDs. That’s the idea behind this wristwatch and Hackaday Prize entry. It’s a tiny board, loaded up with an ATmega, a few buttons, and a bunch of LEDs in a big charlieplexed array.

The big feature of this display is the array of LEDs. This is a 16×5 array of 0603 LEDs packed together as tightly as possible. That’s a tiny, high-resolution LED display, but even with the ATmega88 microcontroller powering this board, all the LEDs are individually addressable, and a proper font for displaying the time, or anything else, is already mapped out.

LED matrices are pretty common around these parts, but building a custom display out of SMD LEDs is another level entirely. The best one we’ve seen was this unofficial badge from two DEF CONs ago. That was done the cheater’s way with a bunch of serially addressable LED drivers. This charlieplexed version goes above and beyond, and we’re eagerly awaiting the board files so this display can be replicated easily.

Hackaday Links: August 21, 2016

Are you in New York? What are you doing this week? Hackaday is having a party on Wednesday evening. come on out!

How about a pub in Cambridge? Hackaday and Tindie will be there too, on Wednesday evening. It’s a bring-a-hack, so bring a hack and enjoy the company of your fellow nerds. If this goes late enough we can have a trans-Atlantic Hackaday meetup.

Portable emulation machines are all the rage, and [Pierre] built one based on the Raspberry Pi Zero. It’s small, looks surprisingly comfortable to hold, and is apparently it’s fairly inexpensive to build your own.

For the last year or so, the Raspberry Pi Zero has existed. This came as a surprise to many who couldn’t buy a Raspberry Pi Zero. In other news, Ferraris don’t exist, and neither do Faberge egg omelets. Now, the Raspberry Pi shortage is officially over. They’re in stock everywhere, and we can finally stop listening to people who call the Pi Zero a marketing ploy.

No Starch Press is having another Humble Bundle. Pay what you want, and you get some coding books. They have Python, Haskell, and R, because no one should ever have to use SPSS.

[Reg] wrote in to tell us about something interesting he found while cruising eBay. The used and surplus market is awash in Siemens MC45/MC46 cellular modem modules. They’re a complete GSM ‘cellular modem engine’, with an AT command set, and cost about $10 each. Interfacing them with a board requires only two (strange) connectors, SIM and SD card sockets, and a few traces to through-hole pads. Anyone up for a challenge? A breakout board for this cellular modem could be very useful, should someone find a box full of these modules in a surplus shop.

On this page, about halfway down the page, is an LCD driver board. It turns a video signal into something a small, VGA resolution LCD will understand. This driver board is unique because it is completely hand-made. This is one of those small miracles of a soldering iron and copper clad board. If anyone out there is able to recognize these parts, I’d love for you to attempt an explanation in the comments.

A few weeks ago, the RTL8710 WiFi module showed up on the usual online marketplaces. Initially, we thought it was a competitor to the ever-popular ESP8266, offering a small microcontroller, WiFi, and a bunch of useful output pins. A module based on the RTL8710, the RTL-00, is much more than a competitor. It’s pinout compatible with the ESP8266. This module can be swapped into a project in place of the ESP-12, probably the most popular version of the ESP8266. This is genius, and opens the door to a lot of experimentation with the RTL8710.

Hackaday Prize Entry: A CNC Plasma Table

CNC routers and 3D printers are cool, but the last time I checked, cars and heavy machinery aren’t made out of wood and plastic. If you want a machine that will build other machines, you want a CNC plasma cutter. That’s [willbaden]’s entry for the Hackaday prize. It’s big, massive, and it’s already cutting.

A plasma CNC machine isn’t that much different from a simple CNC router. [will]’s table controller is just a GRBL shield attached to an Arduino, the bearings were stolen from many copy machines, and your motors and drivers are fairly standard, barring the fact they’re excessively huge for a simple 3D printer.

The real trick up [will]’s sleeve is the controller interface. For this, he’s mounted a Raspberry Pi display, a big, shiny, red button, and all the associated electronics behind a beautifully rusty welded enclosure. This part of the build just sends gcode over to the GRBL shield, and is doing so reliably. Right now [will] is looking for some way to save, arrange, and queue jobs on the Pi, a problem that is almost – but not quite – the same job Octoprint does. A software for big, mean CNCs that spew exotic states of matter is an interesting project, and we can’t wait to see where [will] goes with this one.

Hackaday Prize Entry: A Raspberry Pi Password Manager

Every week there’s new a new website that has been compromised and the passwords of a few hundred thousand accounts have been leaked to a pastebin. To protect yourself you can change your passwords often, not reuse passwords, and use long compilcated strings; all of these techniques are far beyond the capacity for human memory, or even a Post-it note. Thus the age of electronic password keepers began.

Electronic password keepers are simple devices that save your passwords and can recall them over a USB connection. The Raspberry Pi Zero functions perfectly fine as a USB device, leading [gir] to build the Raspi Zero WiFi Enable Hardware Password Manager for the Hackaday Prize.

This USB gadget uses pass, the ‘standard unix password manager’ to store all the passwords. Everything is controlled by a few buttons, a small OLED display, and of course the Raspi’s ability to become a USB HID device. This allows the Pi Zero to type passwords in just like a USB keyboard.

It’s a great project, and since the Pi Zero actually exists now, much to the surprise of its many detractors, the perfect entry for the Hackaday Prize.