The End of Arduino 101: Intel Leaves Maker Market

This looks like the end of the road for Intel’s brief foray into the “maker market”. Reader [Chris] sent us in a tip that eventually leads to the discontinuation notice (PCN115582-00, PDF)Β for the Arduino 101 board. According to Intel forum post, Intel is looking for an alternative manufacturer. We’re not holding our breath.

We previously reported that Intel was discontinuing its Joule, Galileo, and Edison lines, leaving only the Arduino 101 with its Curie chip still standing. At the time, we speculated that the first wave of discontinuations were due to the chips being too fast, too power-hungry, and too expensive for hobbyists. Now that Intel is pulling the plug on the more manageable Arduino 101, the fat lady has sung: they’re giving up on hardware hackers entirely after just a two-year effort.

According to the notice, you’ve got until September 17 to stock up on Arduino 101s. Intel is freezing its Curie community, but will keep it online until 2020, and they’re not cancelling their GitHub account. Arduino software support, being free and open, will continue as long as someone’s willing to port to the platform.

Who will mourn the Arduino 101? Documentation was sub-par, but a tiny bit better than their other hacker efforts, and it wasn’t overpriced. We’re a little misty-eyed, but we’re not crying. Β You?


Duocopter Does it With Two Fewer Propellers

Quads are a great ‘copter design. The paired blades counteract each others’ torque, and varying the relative speeds of the four motors makes it easy to steer. But what if you could get by with fewer blades, substituting a significantly fancier control algorithm?

[Dirk Brunner]’s DuoCopter drone uses two propellers that counter-rotate, and it steers by increasing and decreasing the speed at which the blades rotate within a single revolution. Spinning faster on one side than the other makes it tilt. Saying this is one thing, but getting the real-time control algorithms up and running is another. From the video embedded below, it looks like [Dirk] has it working. (He also holds the world’s record for fastest quadcopter ascent, FWIW.)

Of course some of you out there won’t be satisfied until your ‘copter has only one propeller. Or maybe you’d prefer a third prop. Whatever your taste, we’re stoked to see people pushing the boundaries of copter design.

Continue reading “Duocopter Does it With Two Fewer Propellers”

RoGeorge Attacks a Pulse Meter

The “Crivit Sports” is an inexpensive chest-strap monitor that displays your current pulse rate on a dedicated wristwatch. This would be much more useful, and presumably more expensive, if it had a logging option, or any way to export your pulse data to a more capable device. So [RoGeorge] got to work. Each post of the (so-far) three-part series is worth a read, not the least because of the cool techniques used.

In part one, [RoGeorge] starts out by intercepting the signals. His RF sniffer? An oscilloscope probe shorted out in a loop around the heart monitor. Being able to read the signals, it was time to decode them. Doing pushups and decoding on-off keyed RF signals sounds like the ideal hacker training regimen, but instead [RoGeorge] used a signal generator, clipped to the chest monitor, to generate nice steady “heartbeats” and then read the codes off the scope without breaking a sweat.

With the encoding in hand, and some help from the Internet, he tested out his hypothesis in part two. Using an Arduino to generate the pulses logged in part one, he pulsed a coil and managed to get the heart rates displayed on the watch.

Which brings us to part three. What if there were other secrets to be discovered? Brute-forcing every possible RF signal and looking at the watch to see the result would be useful, but doing so for 8,192 possible codes would drive anyone insane. So [RoGeorge] taught himself OpenCV in Python and pointed a webcam at the watch. He wrote a routine that detected the heart icon blinking, a sign that the watch received a valid code, and then transmitted all possible codes to see which ones were valid. Besides discovering a few redundant codes, he didn’t learn much new from this exercise, but it’s a great technique.

We’re not sure what’s left to do on the Crivit. [RoGeorge] has already figured out the heart-rate data protocol, and could easily make his own logger. We are sure that we liked his thorough and automated approach to testing it all, from signal-generator-as-heartbeat to OpenCV as feedback in a brute-force routine. We can’t wait to see what’s up next.

I am an Iconoscope

We’d never seen an iconoscope before. And that’s reason enough to watch the quirky Japanese, first-person video of a retired broadcast engineer’s loving restoration. (Embedded below.)

Quick iconoscope primer. It was the first video camera tube, invented in the mid-20s, and used from the mid-30s to mid-40s. It worked by charging up a plate with an array of photo-sensitive capacitors, taking an exposure by allowing the capacitors to discharge according to the light hitting them, and then reading out the values with another electron scanning beam.

The video chronicles [Ozaki Yoshio]’s epic rebuild in what looks like the most amazingly well-equipped basement lab we’ve ever seen. As mentioned above, it’s quirky: the iconoscope tube itself is doing the narrating, and “my father” is [Ozaki-san], and “my brother” is another tube — that [Ozaki] found wrapped up in paper in a hibachi grill! But you don’t even have to speak Japanese to enjoy the frame build and calibration of what is probably the only working iconoscope camera in existence. You’re literally watching an old master at work, and it shows.

Continue reading “I am an Iconoscope”

Hackaday Prize Entry: Dongle For A Headless Pi

Mass production means that there’s a lot of great hardware out there for dirt cheap. But it also means that the manufacturer isn’t going to spend years working on the firmware to squeeze every last feature out of it. Nope, that’s up to us.

[deqing] took a Bluetooth Low Energy / USB dongle and re-vamped the firmware to turn it into a remote keyboard and mouse, and then wrote a phone app to control it. The result? Plug the USB dongle in, and the computer thinks it sees a keyboard and mouse. Connect the phone via BLE, and you’re typing — even if you don’t have your trusty Model F by your side.

[Deqing] points out that ergonomics and latency will make you hate using this in the long term, but it’s just meant to work until you’ve got SSH up and running on that headless single-board Linux thing. If you’ve ever worked with the USB or BLE specifications, you can appreciate that there’s a bit of work behind the scenes in making everything plug and play, and the web-based interface is admirably slick.

Kudos, [deqing]!

Beautiful DIY Spot Welder Reminds Us We Love 3D Printing

[Jim Conner]’s DIY tab spot welder is the sweetest spot welder we’ve ever seen. And we’re not ashamed to admit that we’ve said that before.

The essence of a spot welder is nothing more than a microwave oven transformer rewound to produce low voltage and high current instead of vice-versa. Some people control the pulse-length during the weld with nothing more than their bare hands, while others feel that it’s better implemented with a 555 timer circuit. [Jim]’s version uses a NodeMCU board, which is desperately overkill, but it was on his desk at the time. His comments in GitHub about coding in Lua are all too familiar — how do arrays work again?

Using the fancier microcontroller means that he can do fancy things, like double-pulse welding and so on. He’s not even touching the WiFi features, but whatever. The OLED and rotary encoder system are sweet, but the star of the show here is the 3D printed case, complete with soft parts where [Jim]’s hand rests when he’s using the welder. It looks like he could have bought this thing.
Continue reading “Beautiful DIY Spot Welder Reminds Us We Love 3D Printing”

Completely Owning the Dreamcast Add-on You Never Had

If you’ve got a SEGA Dreamcast kicking around in a closet somewhere, and you still have the underutilized add-on Visual Memory Unit (VMU), you’re in for a treat today. If not, but you enjoy incredibly detailed hacks into the depths of slightly aged silicon, you’ll be even more excited. Because [Dmitry Grinberg] has a VMU hack that will awe you with its completeness. With all the bits in place, the hacking tally is a new MAME emulator, an IDA plugin, a never-before ROM dump, and an emulator for an ARM chip that doesn’t exist, running Flappy Bird. All in a month’s work!

The VMU was a Dreamcast add-on that primarily stored game data in its flash memory, but it also had a small LCD display, a D-pad, and inter-VMU communications functions. It also had room for a standalone game which could interact with the main Dreamcast games in limited ways. [Dmitry] wanted to see what else he could do with it. Basically everything.

We can’t do this hack justice in a short write-up, but the outline is that he starts out with the datasheet for the VMU’s CPU, and goes looking for interesting instructions. Then he started reverse engineering the ROM that comes with the SDK, which was only trivially obfuscated. Along the way, he wrote his own IDA plugin for the chip. Discovery of two ROP gadgets allowed him to dump the ROM to flash, where it could be easily read out. Those of you in the VMU community will appreciate the first-ever ROM dump.

On to doing something useful with the device! [Dmitry]’s definition of useful is to have it emulate a modern CPU so that it’s a lot easier to program for. Of course, nobody writes an emulator for modern hardware directly on obsolete hardware — you emulate the obsolete hardware on your laptop to get a debug environment first. So [Dmitry] ported the emulator for the VMU’s CPU that he found in MAME from C++ to C (for reasons that we understand) and customized it for the VMU’s hardware.

Within the emulated VMU, [Dmitry] then wrote the ARM Cortex emulator that it would soon run. But what ARM Cortex to emulate? The Cortex-M0 would have been good enough, but it lacked some instructions that [Dmitry] liked, so he ended up writing an emulator of the not-available-in-silicon Cortex-M23, which had the features he wanted. Load up the Cortex emulator in the VMU, and you can write games for it in C. [Dmitry] provides two demos, naturally: a Mandlebrot set grapher, and Flappy Bird.

Amazed? Yeah, we were as well. But then this is the same guy emulated an ARM chip on the AVR architecture, just to run Linux on an ATMega1284p.