An Incredible Clock Made of Popsicle Sticks

[alvenh] has come a long way since he was a kid, but he kept the bag of popsicle sticks from his childhood. When he set out to build a clock for himself, he remembered his stored treasure and made something unexpectedly good out of the humble material. We’ve seen some neat stuff made with popsicle sticks before, but they usually retain their familiar shape.

[alvenh] began by choosing a style for his clock. We don’t know how he looked at a bag of sticks and thought, “Old English Georgian bracket clock with a bell top,” but if Hackaday teaches anything, it’s that some people just have a wider vision for the world. Next he laminated the sticks together or used them as a veneer for a thinner sheet of plywood to make his base materials.

An incredible amount of work went into the clock as he did things like sanding large contours using a jar for a form, or cutting mortise and tenons into craft sticks. [alvenh] even painted the face of the clock using his German Shepard as a model. Finally he installed an antique movement into the creation. The final result is stunning, and the build log is fun to read through.

Continue reading “An Incredible Clock Made of Popsicle Sticks”

Current meter shows current time

This isn’t the first of its type, but [Daniel]’s MSP430 based Analog Gauge Clock certainly ticks off the “hack” quotient. He admits an earlier Voltmeter Clock we featured a while back inspired him to build his version.

[Daniel] was taking an Embedded systems class, and needed to build an MSP430G2553 microcontroller based final project. Which is why he decided to implement the real time clock using the micro-controller itself, instead of using an external RTC module. This also simplified the hardware used – the microcontroller, a crystal, three analog ammeters, and a few passives were all that he needed. Other than the Ammeters, everything else came from his parts bin. Fresh face plates were put on the ammeters, and the circuit was assembled on a piece of strip board. A piece of bent steel plate served as the housing.

The interesting part is the software. He wrote all of it in bare C, without resorting to using the Energia IDE. He walks through all of the important parts of his code on his blog post. Setting load capacitance for the timing crystal was important, so he experimented with an oscilloscope to see which value worked best. And TI’s Application Note on MSP430 32-kHz Crystal Oscillators (PDF) proved to be a useful resource. Three PWM output’s run the three ammeters which indicate hours, minutes and seconds. Push-button switches let him set the clock. See a short demo of the clock in the video below.

Continue reading “Current meter shows current time”

A Raspberry Pi Tidy Tide Tracker Predicts Propitious Promenades

The whims of the tides can make walking near the ocean a less than pleasant experience. A beautiful seascape one day may appear as a dismal, mucky, tidal flat the next. Frustrated over these weary walks, [Average Man] created a tidy tide tracker to predict propitious promenade periods.

A Raspberry Pi A+ pulls tide timing information off the web by scraping a web page using Python code. The time for the high tide, when the estuary will be full of water, is shown on a 4-digit 7-seg display. It’s all sandwiched between two smoked black panels to provide a neat case while still letting the LEDs show through.

The code comes from two projects [Average] recalled from a kickstarter timing project and a 7-seg display project. As he points out:

It’s great to learn programming from others, but it’s even better if you learn them well enough to remember, re-use and combine that code later on as well.

The display chips are mounted on a product of his own, the no longer available ProtoPal board. This is a Pi A+ size board with 288 prototyping holes and the standard connector for mounting on the Pi GPIO header. It keeps the project neat and clean.

The Three Week Three Dollar Binary Watch

There’s a Maker Faire in three weeks, and your group wants to design and build a binary watch to give to attendees. You don’t have much time, and your budget is $3 per watch. What do you do? If you are [Parker@Macrofab] you come up with a plan, buy some parts, and start prototyping.

[Parker] selected the PIC16F527 because it had enough I/O and was inexpensive. A cheap crystal and some miscellaneous discrete parts rounded out the bill of materials. Some cheap ESD straps would serve for a band. He did the prototype with a PICDEM board and immediately ran into the bane of PIC programmers: the analog comparators were overriding the digital I/O pins. With that hurdle clear, [Parker] got the rest of the design prototyped and laid a board out in Eagle.

Continue reading “The Three Week Three Dollar Binary Watch”

Texel: Art Tracks You, Tracks Time

French robot-artist [Lyes Hammadouche]  tipped us off to one of his latest works: a collaboration with [Ianis Lallemand] called Texel. A “texel” is apparently a time-pixel, and the piece consists of eight servo-controlled hourglasses that can tip themselves over in response to viewers walking in front of them. Besides making graceful wavelike patterns when people walk by, they also roughly record the amount of time that people have spent looking at the piece — the hourglasses sit straight up when nobody’s around, resulting in a discrete spatial representation of people’s attentions to the piece: texels.

We get jealous when we see artists playing around with toys like these. Texel uses LIDAR scanners, Kalman-filtered naturally, to track the viewers. openFrameworks, OpenCV, and ROS. In short, everything you’d need to build a complex, human-interactive piece like this using completely open-source tools from beginning to end. Respect!

Continue reading “Texel: Art Tracks You, Tracks Time”

Light Up Your Day With This LED Clock

We love clocks, and [Chris] got our attention with the internet enabled Light Clock. Time is displayed via RGB LED strip in a number of different ways around a 3D printed white disk. All the modes are based on two selectable colors to indicate hours and minutes, either in a gradient fashion or a hard stop.

Light is provided by a 144 LED neopixel strip and is powered by a beefy 4 amp 5 volt power supply, which also powers the controller. Brains are provided by a ESP8266 powered NodeMCU-12E board, and software is written using ESP8266 for Arduino core.

Being a WiFi enabled micro controller it is a simple matter of connecting to the clock using WiFi and using the embedded web pages to select your local timezone, color palette, and display mode. The correct time is set by network and will never be wrong. While there is a Kickstarter for selling the finished project, instructions and software are provided for making your own if you wish.

Join us after the break for the promotional Kickstarter and demonstration video

Continue reading “Light Up Your Day With This LED Clock”

Chromatic Clocks With A Steampunk Twist

There’s nothing like a good clock project, and tacking the steampunk modifier on it only makes it better. [José] built a steampunk clock that does it much better than just gluing some gears on an enclosure and calling it a day. This build includes glowing jewels displaying the time in different colors while displaying the a steampunker’s prowess with a pipe cutter.

The body of the clock is a piece of finely lacquered wood, hiding a perfboard construction with a DS3231 real time clock, a DHT22 temperature and humidity sensor, and a light sensor for dimming the WS2812 LEDs according to the ambient light level.

The rest of the clock is a bunch of 12mm copper pipe, elbows, and t couplers. The end of these pipes are capped off with marbles, with the RGB LEDs behind each of the ‘digits’ of the clock. This is a chromatic clock, with the digits 0 through 9 assigned a different color, based on the resistor color code scheme with exceptions for black and brown. Once you’ve figured out how to tell time with this clock, you should have no problem finding that single 56k resistor in your junk box.

You can check out the video of the clock below.

Continue reading “Chromatic Clocks With A Steampunk Twist”