New Take on the Binary Clock

By now it might seem like there’s no new way to build a binary clock. It’s one of the first projects many build to try out their first soldering irons, so it’s a well-traveled path. Every now and then, however, there’s a binary clock that takes a different approach, much like [Stephen]’s latest project which he calls the byte clock.

The clock works by dividing the 24-hour day into half and using an LED to represent this division, which coincidentally works out to representing AM or PM. The day is divided in half over and over again, with each division getting its own LED. In order to use this method to get one-second resolution it would need 16 LEDs, but since that much resolution isn’t too important for a general-use clock, [Stephen] reduced this to eight.

Additionally, since we’re in the Internet age, the clock has built-in WiFi courtesy of a small version of Python called WiPy which runs on its own microcontroller. A real-time clock rounds out the build and makes sure the clock is as accurate as possible. Of course an RTC might not have the accuracy as some other clocks, but for this application it certainly gets the job done.

TORLO is a Beautiful 3D Printed Clock

What if you could build a clock that displays time in the usual analog format, but with the hands moving around the outside of the dial instead of rotating from a central point? This is the idea behind TORLO, a beautiful clock built from 3D printed parts.

The clock is the work of [ekaggrat singh kalsi], who wanted to build a clock using a self-oscillating motor. Initial experiments had some success, however [ekaggrat] encountered problems with the motors holding consistent time, and contacts wearing out. This is common in many electromechanical systems — mechanics who had to work with points ignition will not remember them fondly. After pushing on through several revisions, it was decided instead to switch to an ATtiny-controlled motor which was pulsed once every two seconds. This had the benefit of keeping accurate time as well as making it much easier to set the clock.

The stunning part of the clock, however, is the mechanical design. The smooth, sweeping form is very pleasing to the eye, and it’s combined with a beautiful two-tone colour scheme that makes the exposed gears and indicators pop against the white frame. The minute and hour hands form the most striking part of the design — the indicators are attached to a large ring gear that is turned by the gear train built into the frame. The video below the break shows the development process, but we’d love to see a close-up of how the gear train meshes with the large ring gears which are such an elegant part of the clock.

A great benefit of 3D printing is that it makes designing custom gear trains very accessible. We’ve seen other unconventional 3D printed clock builds before. 

Continue reading “TORLO is a Beautiful 3D Printed Clock”

Antique Pinball Machine Lives as Clock

A big problem with restoring old arcade or pinball machines is finding original parts to get them running again. That’s part of the fun, though; when something finally works after weeks or months of effort. On the other hand, sometimes the only hope for old parts that will never be in a pinball machine again is for [Randy] to come across them. One of those parts he had lying around was a backglass for an old machine, and decided to turn it into a unique word clock.

The original pinball machine was built in 1956, and despite its age the backglass had almost no signs of wear or damage. There are 43 lights on this particular machine which is more than enough for 12 hours, minutes (by the 10s), seconds, and a few extras. An ATtiny85 serves as the controller and drives a fleet of Neopixels hidden in the display. There are also three buttons which control the brightness and allow the time to be set.

Be sure to check out the video below of this one-of-a-kind clock in action. A lot more went into this build as well including framing the glass, giving it a coat of paint and polish, and programming the clock into the microcontroller. Old backglasses from pinball machines seem to be relatively popular to repurpose into more conventional clocks, too, even clocks of an atomic nature.

Continue reading “Antique Pinball Machine Lives as Clock”

Disco Flashlight Binary Analog Clock?

As multitools have lots of different functions in one case, so [Shadwan’s] clock design incorporates a multitude of features. He started the design as a binary clock using a Fibonacci spiral for the shape. However, the finished clock has four modes. The original binary clock, an analog clock, a flashlight (all lights on), and a disco mode that strobes multiple lights.

[Shadwan] used Rhino to model the case and then produced it using a laser cutter. The brains are — small wonder — an Arduino. A 3D-printed bracket holds everything together. You can see the result in the video below.

Continue reading “Disco Flashlight Binary Analog Clock?”

Digital Clock Goes with the Grain

This good-looking clock appears to be made out of a block of wood with LED digits floating underneath. In reality, it is a block of PLA plastic covered with wood veneer (well, [androkavo] calls it veneer, but we think it might just be a contact paper or vinyl with a wood pattern). It makes for a striking effect, and we can think of other projects that might make use of the technique, especially since the wood surface looks much more finished than the usual 3D-printed part.

You can see a video of the clock in operation below. The clock circuit itself is nothing exceptional. Just a MAX7218 LED driver and a display along with an STM32 ARM processor. The clock has a DHT22 temperature and humidity sensor, as well as a speaker for an alarm.

Continue reading “Digital Clock Goes with the Grain”

Energy Harvesting Wristwatch Uses a Versatile Photodiode

There’s some interesting technology bundled into this energy harvesting wristwatch. While energy harvesting timepieces (called automatic watches) have been around for nearly 240 years, [bobricius] has used parts and methods that are more easily transferable to other projects.

Unlike early mechanical systems, this design uses the versatile BPW34 PIN photodiode (PDF warning). PIN photodiodes differ from ordinary PN diodes in that there’s a layer of undoped ‘intrinsic’ silicon separating the P and N doped layers. This reduces the utility of the diode as a rectifier, while allowing for higher quantum efficiency and switching speed.

They are typically used in the telecommunications industry, but have a number of interesting ‘off label’ applications. For example, the BPW34 can be used as a solid-state particle detector (although for detecting alpha particles you’re better off with something in a TO-5 package such as the Hamamatsu S1223-01). The fast response speed means you can send data with lasers or ambient light at high frequencies – a fun use for an LED lighting system or scrap DVD-RW laser.

Some common solar panels are essentially large PIN photodiodes. These are the brownish panels that you’ll find in a solar-powered calculator, or one of those eternally waving golden plastic neko shrines. They specifically offer excellent low-light performance, which is the basis of the energy harvesting used in this project.

Continue reading “Energy Harvesting Wristwatch Uses a Versatile Photodiode”

Wake Up To Fresh Coffee!

Be careful what you say when you are shown a commercial product that you think you could make yourself, you might find yourself having to make good on your promise.

When he was shown a crowdfunded alarm clock coffee maker, [Fabien-Chouteau] said “just give me an espresso machine and I can do the same”. A Nespresso capsule coffee machine duly appeared on his bench, so it was time to make good on the promise.

The operation of a Nespresso machine is simple enough, there is a big lever on the front that opens the capsule slot and allows a spent capsule to drop into a hopper. Drop in a new capsule, pull the lever down to load it into the mechanism, then press one of the buttons to tell it to prime itself. After a minute you can them press either of the large cup or the small cup buttons, and your coffee will be delivered.

To automate this with an alarm clock there is no necessity to operate the lever, it’s safe to leave loading a capsule to the user. Therefore all the clock has to do is trigger the process by operating the buttons. A quick investigation with a multimeter on the button PCB found that the voltage present was 15 V, well above the logic level of the STM32F469 board slated for the clock. Thus a simple circuit was devised using a MOSFET to  do the switching.

Finally, the clock software was created for the STM32F469. The chip’s 2D graphics acceleration hardware and the development board’s high quality display make for a very slick interface indeed.

You can see the resulting clock in the video below the break. It’s an alarm clock coffeemaker we’d be proud to have beside our beds, but there’s one slight worry. On a mains-powered device like the Nespresso the low voltage rails are not always mains-isolated, and it’s not clear whether or not this is the case. Maybe we’d have incorporated an opto-isolator, just in case.

Continue reading “Wake Up To Fresh Coffee!”